Contents

1

2

Type Safety 2
11 Strong Type Definitions 4
111 The Type-Safe enum 8
1.2 TypePunning 9
1.3 TypeCasting 10
1.31 static_cast 10
1.3.2 dynamic_cast 10
.33 const_cast, 1
1.3.4 reinterpret_cast. 11
Memory Safety 11
21 Common Memory Safety Issues 11
2.1.1 Buffer Overflows 1
212 nullptr Dereferencing 12
213 Dangling Pointers 12
214 Memory Leaks 12
2.2 Smart Pointers 13
221 Unique Pointer, 13
2.2.2 Shared Pointer. 14
223 WeakPointer 15

1 Type Safety

Type safety refers to the enforcement of correct and consistent use of data
types within a program. A language is typically considered type-safe if it pre-
vents operations that are invalid for a given type. In C++, type safety is partic-
ularly important because improper use of types can easily result in subtle bugs,
crashes, or undefined behavior.

C++ is often described as a statically typed language, meaning type checking
is performed at compile time. For example, the following code results in a
compile-time error rather than a run-time failure:

X = "forty-two";

This behavior prevents many categories of type-related bugs from ever making
it into a running program. However, C++ is also a highly flexible language-and
this flexibility includes numerous implicit type conversions, some of which can
introduce subtle, silent bugs. While this freedom is powerful, it can be dan-
gerous if used carelessly or without full understanding. Consider the following
example:

#include <iostream>

main()
.{
X{-l}l
y {11}
std::cout << (x < y) << std::endl;
}

Despite what might seem like an intuitive comparison, this program will confi-
dently assert that 1 is less than -1. This happens because when comparing an

and an , C++ is forced to reconcile the type difference and does
so by turning the signed integer x into an unsigned value. Since x is negative,
the conversion results in a large positive number, which distorts the intended
comparison. An even more egregious example:

#include <iostream>
main()

f =0.1;
std::cout << (f == 0.1) << std::endl;

This program, surprisingly, prints 0, indicating that f does not equal the value

we assigned to it just a line before. The reason for this discrepancy lies in

a subtle detail: 0.1 is a literal, which holds more precision than the
. When the value is assigned to the , it loses precision,

causing the comparison to fail. For a deeper explanation of this issue, feel free

to check out my talk: “Messing with Floating Point.”

A type-safe program aims to eliminate these classes of bugs by ensuring that:

o Types are not implicitly converted in ways that compromise correctness.
* Operations are performed only on types that support them.

* The program behaves predictably with respect to the types involved.

In the sections that follow, well explore type-safe programming in C++ and
discuss the tools, practices, and patterns we can use to write safer, more pre-
dictable code.

11 Strong Type Definitions

A strong typedef creates a new, distinct type at the language level. This can
help enforce type safety by ensuring that different types-even if they share the
same underlying representation-can’t be mixed up by accident. Consider the
following example where we use a function to calculate the final price of a sale:

salestax.cpp

#include <iostream>

final_price(P, t)
{
return (1.0 + t) * p;
I
main()
{
p = 5499.99;
t = 0.06;
std::cout << final_price(t, p) << std::endl;
}

clang++ -std=c++23 salestax.cpp

./a.out
330.059

The user of this program will no doubt be delighted to discover that their $5500
purchase will only cost them $330. The cause of this error is simple-though easy
to miss: We passed the parameters in the wrong order to final_price(). C++
gives us the tools to prevent this kind of mix-up by using the type system more
intentionally. We can define strong types that make it impossible to confuse
parameters with the same underlying type but different meaning.

A naive attempt at a solution might involve introducing type aliases for prices
and tax rates, hoping to prevent ourselves from accidentally mixing them up:

salestax2.cpp

#include <iostream>

using Price = ;
using TaxRate = ;

Price final_price(Price p, TaxRate t)

{
return (1.0 + t) * p;
s
main()
{
Price p = 5499.99;
TaxRate t = 0.06;
std::cout << final_price(t, p) << std::endl;
}

However, this solution offers little benefit beyond improved readability. The
compiler still treats Price and TaxRate as identical types, so our bug slips
through unnoticed. To make the compiler enforce the distinction, we must
define entirely new types-rather than simple aliases:

salestax3.cpp

#include <iostream>

struct Price { value; };
struct TaxRate { value; };

Price final_price(Price p, TaxRate t)

{

return { (1.0 + t.value) * p.value };

main()

Price p { 5499.99 };
TaxRate t { 0.06 };
std::cout << final_price(t, p).value << std::endl;

clang++ -std=c++23 salestax3.cpp

15:15: error: no matching function for call to 'final_price'
15 | std::cout << final_price(t, p).value << std::endl;

It appears the compiler has finally caught on to our antics, and we’ll be forced
to pay full price. Thats a win for correctness. However, perhaps we can do
better still. A codebase littered with .value member accesses isnt exactly one
Id be thrilled to work in. Perhaps we can clean this up using templates:

safetype.h

template<class T, class Tag>
class SafeType

{
private:
T value;
public:
SafeType(T t): value(t) {}
template<class U, class UTag>
SafeType(const SafeType<U, UTag>&) = delete;
operator T() const { return value; }
i

The templated class above allows us to define strong types that the compiler
treats as distinct, while still allowing implicit conversion to the underlying type
when needed. This strikes a practical balance: we get safety from mismatched

arguments without giving up ergonomics.
salestax4.cpp

#include "safetype.h"
#include <iostream>

using Price = SafeType< , struct Price_>;
using TaxRate = SafeType< , struct TaxRate_>;

Price final_price(Price p, TaxRate t)

{
return { (1.0 + t) * p };
}
main()
{
Price p(5499.99);
TaxRate t(0.06);
std::cout << (final_price(p, t)) << std::endl;
s

We can take this idea one step further by inheriting from the SafeType template
instead of using a type alias. This approach tends to produce cleaner and more
informative error messages when something goes wrong:

salestaxs.cpp

#include "safetype.h"
#include <iostream>

struct Price: SafeType< , Price> { using
SafeType::SafeType; };
struct TaxRate: SafeType< , TaxRate> { using

SafeType::SafeType; };

Price final_price(Price p, TaxRate t)

{

return { (1.0 + t) *x p };

¥

main()
{

Price p(5499.99);

TaxRate t(0.06);

std::cout << (final_price(t, p)) << std::endl;
}

111 The Type-Safe enum

There is an even simpler solution that can be used to create strong type defini-
tions to distinguish between underlying integral types. This is achieved through
the use of enum class:

#include <iostream>

enum class Apple: uint32_t {};
enum class Orange: uint32_t {};

main()
{
Apple a { 10 };
Orange b { 20 };
// error, cannot compare Apples and Oranges
std::cout << (a < b) << std::endl;
}

In this example, Apple and Orange are both defined as enum class types,
backed by uint32_t. The key difference here is that enum class creates dis-
tinct types, preventing the comparison of these two, even though they share
the same underlying type. This ensures type safety and avoids unintended type
mixing, which can be a common issue in less strict systems.

1.2 'Type Punning

Type punning refers to treating memory that holds some data type as if it holds
a differnet data type. This can be achived in a number of ways. Most simply is
the union construct:

#include <iostream>

union FloatInt

{
i
i

i

main()
{

FloatInt pun;

pun.f = 3.14;

std::cout << pun.i << std::endl;
b

In this example, pun.i and pun.f occupy the same memory. Another way to
achieve type punning is to use pointer casting:

#include <iostream>
main()
x { 400 };

d { *(*) (&x) };

std::cout << d << std::endl;

The above exmaple is generally terrible, not least because it reads four bytes
beyond the indended value of x.

1.3 Type Casting

C++ offers several casting operators to convert variables from one type to an-
other. These casts provide more control and type safety compared to C-style
casts.

1.3.1 static_cast

static_cast performs a non-polymorphic conversion between types. It’s checked

at compile time (hence static), and is generally safe for conversions like to
x {10 };
d { static_cast< >(x) };

1.3.2 dynamic_cast

dynamic_cast is used for run-time polymorphic type conversions, specifically
with inheritance. It checks the type of the object at run-time and returns a valid
pointer if the conversion is possible, else nullptr.

class Base
{

virtual foo() {}
b

class Derived: public Base {};

main()
{

Basex b = new Derived();

Derived* d = dynamic_cast<Derived*>(b);
}

10

1.3.3 const_cast

const_cast modifies the constness or volatility of a variable:

const x { 20 };
* non_const { const_cast<int*>(&c) };

1.3.4 reinterpret_cast

reinterpret_cast is the most powerful and potentially dangerous cast. It
reinterprets the underlying bit pattern as a different type:

*x ptr { new (30) };
address { reinterpret_cast< >(ptr) };

2 Memory Safety

Memory safety refers to the concept of ensuring that a program does not access
memory in an unintended or unsafe manner. This can involve issues such as
out-of-bounds access, null pointer dereferencing, or memory leaks, all of which
can lead to undefined behavior, crashes, or security vulnerabilities. In C++,
memory safety is a critical concern due to the language’s low-level features and
manual memory management capabilities, which allow developers more control
but also more responsibility.

2.1 Common Memory Safety Issues

Before diving into strategies for improving memory safety, let’s examine some
of the most common issues developers face in C++ programs.

2.1.1 Buffer Overflows

Buffer overflows occur when a program writes past the end of an array (a buffer),
corrupting adjacent memory. Theyre a common source of security vulnerabili-
ties, as attackers can exploit them to inject or execute arbitrary code.

11

overflow.cpp

#include <iostream>

main()
{
buffer[10];
strcpy(buffer, "This is too long for the buffer");
}

212 nullptr Dereferencing
Dereferencing a NULL pointer causes undefined behavior and can lead to pro-

gram crashes:

* ptr { nullptr };
*ptr = 10;

213 Dangling Pointers

A dangling pointer is a pointer that references a memory location after the
object that it points to has been deallocated. Dereferencing a pointer leads to
undefined behavior:

* ptr { new b
delete ptr;
*ptr = 10;

214 Memory Leaks

Memory leaks occur when a program allocates memory but fails to deallocate it,
causing the program to consume ever-increasing amounts of memory. Usually
this happens when a call to delete does not follow a call to new.

12

2.2 Smart Pointers

Smart pointers are wrapper classes that manage the lifetime of dynamically
allocated objects. Unlike raw pointers, which require explicit memory man-
agement (using new and delete), smart pointers automatically handle memory
cleanup. Smart pointers are a critical component of RAII (Resource Acquisi-
tion Is Initialization), a C++ programming paradigm that ensures resources are
properly cleaned up when an object goes out of scope.

C++ offers several types of smart pointers, each designed for different use cases.
The most commonly used smart pointers are std::unique_ptr, std::shared_ptr,
and std::weak_ptr, all of which are defined in the <memory> header.

2.21 Unique Pointer

Unique pointers are smart pointers that own an object exclusively. They help to
ensure that the resource managed is freed when the pointer goes out of scope.
A unique pointer cannot be copied. Here is a simplified implementation of the
unique pointer class:

uniqueptr.h

template<class T>
class UniquePtr
{
private:
T* ptr;

public:
unique_ptr(): ptr(nullptr) {};
unique_ptr(T* ptr): ptr(ptr) {}

unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

~unique_ptr(Q)

{
delete ptr;

13

T+ operator->() { return ptr; }

55
Here is an example of using std::unique_ptr:

#include <iostream>
#include <memory>

main()

{
std: :unique_ptr< > ptr = std::make_unique< >(10);
std::cout << *ptr << std::endl;

}

2.2.2 Shared Pointer

A shared pointer allows multiple pointers to share ownership of a resource. The
resource is only freed when the last reference is destroyed. This is managed
by a reference count, which tracks how many shared pointers are sharing the
resource:

shared.cpp

#include <iostream>
#include <memory>

class MyClass

{
public:
MyClass() { std::cout << "constructed" << std::endl; }
~MyClass() { std::cout << "destroyed" << std::endl; }
}

14

main()

{
std: :shared_ptr<MyClass> ptr { nullptr };
{
std: :shared_ptr<MyClass> myobj {
std: :make_shared<MyClass>() };
ptr = myobj;
}
std::cout << "left scope" << std::endl;
}

2.2.3 Weak Pointer

A std::weak_ptr is used to “observe” an object that is managed by a shared
pointer without affecting its reference count. Weak pointers can be constructed
from shared pointers:

weak.cpp

#include <iostream>
#include <memory>

main()

std: :weak_ptr< > weak;
std::shared_ptr< > s;

{

std: :shared_ptr< > shared =

std: :make_shared<int>(42);
weak = shared;
std::cout << "Inside block: weak expired? "
<< std::boolalpha << weak.expired() <<
"\n";

s

15

std::cout << "Outside block: weak expired? "
<< weak.expired() << "\n";

if (locked = weak.lock())
{
std::cout << "Value: " << *locked << "\n";
} else
{

std::cout << "Object no longer exists.\n";

16

