
Advanced OOP Concepts
Introduction to Modern C++

Ryan Baker
March 8, 2025

“Never trust a computer you can’t throw out a
window.” - Steve Wozniak

Lecture Objectives
• To understand the four pillars of object-oriented programming.

• To become acquainted with virtual functions.

• To understand interfaces in C++.

• To know how and when to overload operators for class design
in C++.

• To understand copy constructors.

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

Contents
1 Pillars of OOP 2

1.1 Encapsulation . 2
1.1.1 Getters and Setters . 3
1.1.2 friend Functions . 5

1.2 Inheritance . 6
1.2.1 The virtual Keyword 7
1.2.2 protected Members . 7

1.3 Polymorphism . 8
1.4 Abstraction . 9

1.4.1 Interfaces . 10

2 Operator Overloading 12
2.1 Overloading Non-Member Functions 13
2.2 Commonly Overloaded Operators 14
2.3 Functors . 14

3 Copy Constructors 15

1

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

1 Pillars of OOP
1.1 Encapsulation
Encapsulation is the bundling of data (variables) and methods (functions) that
operate on the data into a single unit. Direct access to the data is restricted to
prevent accidental interference or nefarious misuse.

In C++, encapsulation is demonstrated by marking data members of an ob-
ject private. Consider the following, non-encapsulated implementation of an
Account class:

1 class Account
2 {
3 public:
4 Account(): balance(0) {}
5 double balance;
6 // ...
7 };

Reading the above code should make you shiver. Notice that everything sits
in the public interface, meaning that all data associated with an Account is
subject to accidental modification or nefarious intervention:

1 int main()
2 {
3 Account ryans_account();
4 // Yours truly is the world’s first trillionaire
5 ryans_account.balance = 1e12;
6 }

A wiser architect may design the Account class like this:

1 class Account
2 {
3 private:
4 double balance;
5
6 public:
7 Account(): balance(0) {}
8 // ...
9 };

“But now we cannot access the account’s balance!” I hear you cry. A fair
critique indeed, our class, while encapsulated, is now entirely useless. To fix

2

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

this, we can use getters and setters.

1.1.1 Getters and Setters

Getters and setters are methods defined within a class used to get or set data
members. They can be implemented with more sophisticated and safe logic
than standard member access:

1 class Account
2 {
3 private:
4 double balance;
5
6 public:
7 Account(): balance(0) {}
8
9 // getter for account balance

10 double get_balance() { return this->balance; }
11
12 // setter for account balance
13 void set_balance(double bal)
14 {
15 if (/* some authentication logic */)
16 {
17 this->balance = bal;
18 }
19 }
20 };

Now, access to our account balances can be controlled. As somewhat of a
stylistic aside, I cannot help but cringe when I see a class method prefixed
with get_. I prefer to alter the name of my member variable in some manner,
perhaps by assigning it a unit, then have my getter take on the member’s old
name:

1 class Account
2 {
3 private:
4 double balance_usd;
5
6 public:
7 // ...
8 double balance() { return balance_usd; }
9 };

3

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

Often times, developers choose to prefix their data member names with m_ for
“member”: m_balance. I don’t. You can.

I believe that it is in everyone’s best interest, except perhaps Lucifer himself, to
mark all of your data members as private. First of all, it aids in consistency.
Users of your class need not pontificate about whether or not to access your
members with parentheses or not, because only functions sit in the public
interface.

1 // ... class List defined above
2
3 List l(1, 2, 3);
4
5 // eliminate this confusion
6 std::cout << l.length << std::endl;
7 std::cout << l.length() << std::endl;

A more important reason to place data members in the private section is that
it allows you to implement custom access. If members sit in the public inter-
face, read/write access is always granted. If you mark them private, you can
implement read-only, read-write, or neither read nor write access:

1 class MyClass
2 {
3 private:
4 int a; // hidden
5 int b; // read-only
6 int c; // read-write
7
8 public:
9 int read_b() { return a; }

10 int read_c() { return b; }
11 void write_c(int c) { this->c = c; }
12 };

Finally, hiding data members allows you to implement functional abstraction.
This means that you can change the implementation of your data members or
the calculations you perform on them while your class user can use the same
interface:

1 class Point
2 {
3 private:
4 double x_in, y_in, z_in; // position in inches
5

4

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

6 public:
7 double x() { return x_in; }
8 double y() { return y_in; }
9 double z() { return z_in; }

10 };

Perhaps you’d like to alter your Point class to store data in meters rather
than inches. Rather than needing to modify all the code that interacts with a
point, you need only alter the three getter methods:

1 class Point
2 {
3 private:
4 double x_m, y_m, z_m; // position in meters
5
6 public:
7 double x() { return x_m * 39.37; } // return in
8 double y() { return y_m * 39.37; } // inches like
9 double z() { return z_m * 39.37; } // before

10 };

1.1.2 friend Functions

friend functions declared within a class or struct allow external functions
access to private members:

1 class Point
2 {
3 private:
4 int x, y;
5
6 public:
7 Point(int x, int y): x(x), y(y) {}
8
9 // declare print_point to be a ‘friend’

10 friend print_point(const Point& p);
11 };
12
13 void print_point(const Point& p)
14 {
15 // ...
16 }

5

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

1.2 Inheritance
Inheritance allows a new class to acquire the properties and methods of an exist-
ing class. The new class can also have additional features or override existing
ones. This promotes code reuse and establishes a hierarchical relationship be-
tween classes.

In the following code example, inheritance is demonstrated as both the Dog and
the Cat class inherit from the Animal class:

1 #include <iostream>
2 #include <string>
3
4
5 class Animal
6 {
7 public:
8 Animal(std::string name): name(name) {}
9

10 virtual void speak() { std::cout << name << " is
speaking" << std::endl; }

11 private:
12 std::string name;
13 };
14
15
16 class Cat: public Animal
17 {
18 public:
19 Cat(std::string name): Animal(name) {}
20
21 void speak() override { std::cout << "meow" <<

std::endl; }
22 };
23
24
25 class Dog: public Animal
26 {
27 public:
28 Dog(std::string name): Animal(name) {}
29
30 void speak() override { std::cout << "woof" <<

std::endl; }
31 };
32
33

6

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

34 int main()
35 {
36 Animal* cat = new Cat("Jade");
37 Animal* dog = new Dog("Jenny");
38
39 cat->speak();
40 dog->speak();
41 }

1.2.1 The virtual Keyword

In C++, the virtual keyword is used to declare a method in a base class that
can be overridden in derived classes. A virtual function allows for dynamic (or
runtime) polymorphism, meaning that the method call is resolved at runtime
rather than compile-time.

1.2.2 protected Members

protected members are visible within their own class and classes that inherit
from it:

1 #include <iostream>
2
3
4 class A
5 {
6 private:
7 int a = 1;
8 protected:
9 int b = 2;

10 public:
11 int c = 3;
12
13 A() = default;
14 };
15
16 class B: public A
17 {
18 public:
19 B() = default;
20
21 void foo()
22 {
23 std::cout << a << std::endl; // not ok
24 std::cout << b << std::endl; // ok

7

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

25 std::cout << c << std::endl; // ok
26 }
27 };
28
29
30 int main()
31 {
32 B* ptr = new B;
33 ptr->foo();
34 }

1.3 Polymorphism
Polymorphism allows objects to be treated as instances of their parent class,
enabling the same operation to behave differently based on the object.

1 #include <iostream>
2
3 class Shape
4 {
5 public:
6 virtual void draw() { /* ... */ }
7 };
8
9 class Circle: public Shape

10 {
11 public:
12 // draw circle
13 void draw() { cout << "()" << endl; }
14 };
15
16 class Rectangle: public Shape
17 {
18 public:
19 // draw rectangle
20 void draw() { cout << "[]" << endl; }
21 };
22
23 class Triangle: public Shape
24 {
25 public:
26 // draw triangle
27 void draw() { cout << "|>" << endl; }
28 };

8

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

1.4 Abstraction
Abstraction focuses on exposing only the essential features of an object while
hiding the implementation details. In C++, abstraction is typically achieved us-
ing abstract classes (classes with at least one pure virtual function) or interfaces
(classes with only virtual functions).

Abstract Classes: An abstract class allows you to define methods that must be
implemented by subclasses, while also providing a base for shared functionality.
These classes provide a way to define common behavior that can be shared,
while allowing subclasses to implement their own specific behavior.

Virtual Functions and Inheritance: In C++, a virtual function is a member
function that you expect to override in derived classes. The keyword virtual
ensures that the function call is resolved at runtime, using dynamic dispatch
(polymorphism). This enables the use of the same function name across different
classes, while each class can provide its own specific behavior.
When a base class declares a function as virtual, the derived class can override
it, and when a pointer or reference to the base class is used to call the function,
the appropriate derived class function is executed.

1 #include <iostream>
2
3 class Shape {
4 public:
5 // Shape will not implement draw(), but subclasses

must implement it
6 virtual void draw() = 0;
7 virtual ~Shape() = default;
8 };
9

10 class Circle : public Shape
11 {
12 public:
13 void draw() override
14 {
15 std::cout << "()" << std::endl;
16 }
17 };
18
19 class Square : public Shape
20 {
21 public:
22 void draw() override
23 {
24 std::cout << "[]" << std::endl;

9

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

25 }
26 };
27
28 int main()
29 {
30 Shape* shape1 = new Circle();
31 Shape* shape2 = new Square();
32
33 shape1->draw(); // ()
34 shape2->draw(); // []
35
36 delete shape1;
37 delete shape2;
38 }

In this example, Shape is an abstract class with a pure virtual function draw().
The derived classes Circle and Square provide their specific implementations
of draw(). By using virtual in the base class, we ensure that when draw()
is called on a base class pointer (e.g., Shape*), the correct derived class function
is invoked. This is an example of polymorphism in action.

1.4.1 Interfaces

An interface in C++ is a class that contains only pure virtual functions. These
are functions that are declared but not defined in the base class, essentially
acting as a blueprint that derived classes must follow. An interface defines a
contract of behavior but does not implement it. The purpose of interfaces is to
provide a common set of operations that various classes can implement in their
own specific ways.

In C++, an interface is typically created by defining a class with pure virtual
functions. A pure virtual function is declared by appending = 0 to the function
declaration. A class containing at least one pure virtual function is considered
an abstract class, and it cannot be instantiated directly.
Here’s an example of an interface in C++:

1 #include <iostream>
2
3 class Shape
4 {
5 public:
6 virtual void draw() = 0; // pure virtual
7 virtual double area() = 0; // pure virtual
8 };
9

10 class Circle : public Shape

10

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

11 {
12 private:
13 double radius;
14 public:
15 Circle(double r) : radius(r) {}
16
17 void draw() override {
18 std::cout << "()\n";
19 }
20
21 double area() override {
22 return 3.14159 * radius * radius;
23 }
24 };
25
26 class Square : public Shape
27 {
28 private:
29 double side;
30 public:
31 Square(double s) : side(s) {}
32
33 void draw() override {
34 std::cout << "[]\n";
35 }
36
37 double area() override {
38 return side * side;
39 }
40 };
41
42 int main()
43 {
44 Shape* shape1 = new Circle(5.0);
45 Shape* shape2 = new Square(4.0);
46
47 shape1->draw();
48 std::cout << "Area: " << shape1->area() << "\n";
49
50 shape2->draw();
51 std::cout << "Area: " << shape2->area() << "\n";
52
53 delete shape1;
54 delete shape2;
55 }

11

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

In this example, the class Shape is an interface with two pure virtual func-
tions: draw() and area(). The classes Circle and Square both imple-
ment the Shape interface, providing specific implementations for the draw()
and area() functions.

An important aspect of interfaces is that they allow for polymorphic behavior,
similar to abstract classes, but they focus purely on the contract that derived
classes must follow. In this case, both Circle and Square can be treated
as Shape objects, even though they have different internal data and behavior.
This allows for writing flexible and extensible code that can work with any class
that implements the Shape interface.

While C++ does not have a built-in interface keyword like some other languages,
it is common practice to define interfaces using abstract classes with pure virtual
functions. An interface in C++ essentially serves as a type for polymorphic
behavior, ensuring that classes adhere to a common structure and can be used
interchangeably in certain contexts.

2 Operator Overloading
Operator overloading in C++ allows you to define how operators (such as +, -,
*, ==, etc.) behave for user-defined types (classes or structs). By overloading
operators, you can make your custom types more intuitive and natural to use.

Operator overloading enables you to redefine the way operators work for your
classes. For instance, instead of having to call a function to add two objects of
your class, you can use the + operator directly, just as you would with built-in
types like int or double. To overload an operator, you need to define a spe-
cial member function or a non-member function with the operator keyword,
followed by the operator symbol being overloaded.

1 class Point
2 {
3 private:
4 int x, y;
5
6 public:
7 Point(int x, int y): x(x), y(y) {}
8
9 // overload addition for Points

10 Point operator+(const Point& other)
11 {
12 return Point(
13 this->x + other.x,
14 this->y + other.y

12

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

15);
16 }
17 };
18
19 int main()
20 {
21 Point p1(1, 2), p2(3, 4);
22 Point p3 { p1 + p2 }; // p3 == { 4, 6 }
23 }

In this example, the operator+ function takes another Point object as an
argument and returns a new Point object whose parts are the sums of the
corresponding parts of the two operands. This is a typical use of operator
overloading in C++.

2.1 Overloading Non-Member Functions
Here is an example of overloading the << operator as a non-member function:

1 friend std::ostream& operator<<(
2 std::ostream& os, const Point& p
3)
4 {
5 os << ’{’ << p.x << ’,’ << p.y << ’}’;
6 return os;
7 }

In this case, the << operator is defined outside the class and is marked as a
friend to allow access to private members. The function returns a reference
to the std::ostream object to allow for chaining of the output stream:

1 int main()
2 {
3 Point p(13, 0), q(144,10);
4 std::cout << p << std::endl << q << std::endl;
5 }

Output:

{13,0}
{144,10}

13

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

2.2 Commonly Overloaded Operators
Some operators are commonly overloaded, depending on the nature of the class
and the types of operations it needs to support. Here are a few of the most
frequently overloaded operators:

• +, -, , / Arithmetic operators

• ==, !=, <, > Comparison operators

• [], () Array subscript and function call operators

• <<, >> Stream insertion and extraction operators

• =, +=, -=, =, etc. Assignment operators

1 struct Point
2 {
3 int x, y;
4
5 bool operator==(const Point& other)
6 {
7 return (this->x == other.x)
8 && (this->y == other.y);
9 }

10 }

2.3 Functors
A functor is an object that can be called as if it were a function. This is done
by overloading the function call operator():

1 class RNG
2 {
3 private:
4 unsigned seed;
5
6 public:
7 RNG(unsigned seed): seed(seed) {}
8
9 unsigned operator()(unsigned min, unsigned max)

10 {
11 const unsigned a { 1664525 };
12 const unsigned c { 1013904223 };
13 seed = (a * seed + c);
14

14

Ryan Baker Advanced OOP Concepts Introduction to Modern C++

15 return min + (seed % (max - min + 1));
16 }
17 };

3 Copy Constructors
A copy constructor is a constructor that creates an object using another object
of the same class. It does so by taking a const reference to another object:

1 class MyClass
2 {
3 public:
4 MyClass() = default; // default constructor
5 MyClass(const MyClass& o); // copy constructor
6 };

One use case of a copy constructor is tracking object copies within a project to
optimize performance:

1 class C
2 {
3 private:
4 static int copy_cnt;
5
6 public:
7 C() = default;
8 C(const C& c)
9 {

10 ++C::copy_cnt;
11 }
12
13 static void print_copies()
14 {
15 std::cout << C::copy_cnt << std::endl;
16 }
17 };
18
19 int C::copy_cnt { 0 };

15

