
Introduction to OOP in C++

Introduction to Modern C++

Ryan Baker

March 1, 2025

“Software and cathedrals are much the same – first we
build them, then we pray.”

Lecture Objectives

• To understand arrays and their relationship to pointers.

• To know how to define and use a struct and a class.

• To understand various access-specifiers that C++ provides, and
how they make a distinction between a class and a struct.

• To become familiar with constructors and destructors in C++.

• To know how to design with static within a class.

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

Contents

1 Arrays 2
1.1 Subscript Operator [] . 2
1.2 Array Initialization . 3
1.3 sizeof Arrays . 5
1.4 Multidimensional Arrays . 6

2 Structs 7
2.1 Accessing struct Members ., -> 7
2.2 struct Initialization . 8
2.3 Member Functions . 9

3 Classes 11
3.1 Access Specifiers public, private, protected 11

3.1.1 class vs. struct . 12
3.2 Constructors . 12
3.3 Destructors . 14
3.4 static Members . 15

3.4.1 static Member Functions 16

1

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

1 Arrays

Arrays are used to store multiple values in a single variable. Arrays are declared
using the variable type and the number of elements stored in the array with
square brackets []:

1 int arr [5]; // declares an array with 5 ints

This is often much more straightforward than maintaining separate variables
for each value.

1.1 Subscript Operator []

You can access an array element using the subscript operator [] with the index
of the element you’d like to refer to:

1 #include <iostream >

2

3 int main()

4 {

5 using namespace std;

6 int arr [4];

7 for (int i = 0; i < 4; ++i)

8 arr[i] = i; // write to the array

9

10 // read from the array

11 cout << arr[0] << " " << arr[3] << endl;

12 }

Output:

0 3

Note that array indices begin with 0. arr[0] is the first element, arr[1] is the
second element, etc. This is because of an array’s relationship to pointers: An
array is a pointer to its first element.

00 04 08 12 16 20 24 28

int arr[8];

arr

sizeof(int)

[0] [1] [2] [3] [4] [5] [6] [7]

2

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

This means that an array variable is equal == to the address of its first element:

1 #include <iostream >

2

3 int main()

4 {

5 int arr [100];

6 std::cout << (arr==&arr [0]) << std::endl; // 1

7 }

For an array arr, and an index i, the expression arr[i] is equivalent to *(arr
+ i). Hence why arr == &arr[0] == &(*(arr + 0)). This fact, along with
the commutativity of addition, can be abused in the following manner:

1 int arr [4];

2 3[arr] = 3000; // *(3 + arr) == *(arr + 3)

3 2[arr] = 2000; // *(2 + arr) == *(arr + 2)

1.2 Array Initialization

Arrays can be initialized when declared using an initializer list {}:

1 #include <iostream >

2

3 int main()

4 {

5 int arr[3] { 10, 20, 30 };

6 std::cout << arr[0] << std::endl; // 10

7 std::cout << arr[1] << std::endl; // 20

8 std::cout << arr[2] << std::endl; // 30

9 }

An assignment operator = is optional for array initialization. While brace ini-
tialization {} typically prevents narrowing conversions, narrowing conversions
are already disallowed within initializer lists. Hence, the choice between int

arr[10] = {/* ... */} and int arr[10] {/* ... */} is entirely stylistic.

You may recall that the reason narrowing conversions are allowed for normal
variable initialization is to maintain backwards compatibility with C. However,
because narrowing conversions are disallowed within initializer lists in C++, the
following code is valid in C but not in C++:

1 int arr[1] { 0.5 };

3

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

Initializer lists can be used by the compiler to infer the size of the array:

1 // arr will contain 7 elements

2 int arr[] { 1, 1, 2, 3, 5, 8, 13 };

Providing more initializers than elements will cause a compiler error:

1 // error: excess elements in array initializer

2 int arr[5] { 0, 1, 2, 3, 4, 5 };

If fewer initializers than elements are provided, remaining elements will be 0:

1 int arr[4] { 1 }; // holds { 1, 0, 0, 0 }

A designator, denoted by [i] within in initializer list, causes the following
initializers to begin filling the array at the index specified by the designator.
Initialization continues from the next element after the one described by the
designator:

1 #include <iostream >

2

3 #define SIZE 10

4

5 int main()

6 {

7 // holds { 1, 2, 3, 0, 0, 0, 0, 3, 2, 1 }

8 int arr[SIZE] { 1, 2, 3, [SIZE -3] = 3, 2, 1 };

9

10 // holds { 0, 1, 2, 3, 4 }

11 int arr2 [5] = { [4] = 4, [0] = 0, 1, 2, 3 };

12 }

char type arrays can be initialzed with string literals:

1 #include <iostream >

2

3 int main()

4 {

5 // holds { ‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ }

6 char arr[] { "hello" };

7

8 std::cout << arr << std::endl; // hello

9 }

4

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

1.3 sizeof Arrays

Recall that the sizeof operator returns the number of bytes occupied by a
datatype or variable. sizeof, when called on an array variable, does the same:

1 #include <iostream >

2

3 int main()

4 {

5 int arr[] { 0, 1, 4, 9 };

6 std::cout << sizeof(int) << std::endl;

7 std::cout << sizeof(arr) << std::endl;

8 }

Output:

4

16

We can use this fact to calculate the number of elements in an array:

1 #include <iostream >

2

3 int main()

4 {

5 int arr[] { 0, 1, 4, 9, [32] = 1024 };

6 std::cout << "n elements = "

7 << (sizeof(arr) / sizeof (*arr))

8 << std::endl;

9 }

Output:

33

The expression sizeof(arr) / sizeof(*arr) cannot be used to determine the
number of elements in a dynamically allocated array. This is because sizeof,
when called on a dynamically allocated array, returns the size of the pointer
(sizeof(type*)) rather than the size of the array.

1 // dynamically allocated array

2 int* arr = new int [3];

3

4 std::cout << sizeof(arr) << std::endl; // 8

5

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

This is because operator new may, for a variety of reasons, allocate more bytes
than you explicitly request. Hence, if sizeof were to return the number of
bytes allocated for the array, the result would be useless.

To avoid this confusion and to improve your code’s readability and safety, you
can (and likely should) use std::size(), defined in the <iterator> library:

1 #include <iostream >

2 #include <iterator >

3

4 int main()

5 {

6 int arr[] { 0, 1, 8, 27, 64 };

7 std::cout << std::size(arr) << std::endl;

8 }

Output

5

1.4 Multidimensional Arrays

A multidimensional array is an array of arrays. To declare a multidimensional
array, we simply append more pairs of brackets [N], each denoting the array’s
size in a different dimension:

1 int board [8][8]; // an 8x8 2D array of integers

To access elements within a multidimensional array, specify an index in each of
the array’s dimensions:

1 // expands to *(*(board + 3) + 4)

2 int e4 { board [3][4]; };

Nested initializers can be used to initialize multidimensional arrays:

1 char tictactoe [3][3]

2 {

3 { ’x’, ’x’, ’ ’, },

4 { ’ ’, ’o’, ’ ’, },

5 { ’ ’, ’o’, ’x’, },

6 };

6

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

2 Structs

A structure, or a struct, is a type that stores several related variables in one
place. Each variable in the struct is known as a member of the struct. Unlike
an array, struct members can be of different types:

1 struct MyStruct // declare ‘MyStruct ’ as a type

2 {

3 int a; // member variable (integer)

4 char b; // member variable (character)

5 float c; // member variable (floating point)

6 };

We can instantiate a struct as follows:

1 // MyStruct definition ...

2

3 int main()

4 {

5 MyStruct m; // variable ‘m’ of type ‘MyStruct ’

6 }

2.1 Accessing struct Members ., ->

The member access operator, or the dot operator, is used to access members of
a struct variable:

1 #include <iostream >

2

3 struct MyStruct

4 {

5 int member1;

6 float member2;

7 };

8

9 int main()

10 {

11 MyStruct object;

12

13 object.member1 = 42;

14 object.member2 = 3.14159;

15

16 std::cout << object.member1 << std::endl; // 42

17 }

7

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

The indirect member access operator, also known as the arrow operator, is used
to access members through a pointer to a struct variable.

1 #include <iostream >

2

3 int main()

4 {

5 struct S { int member; };

6

7 S s1;

8 S* ptr { &s1 };

9

10 s1.member = 10;

11 // access ‘member ’ thru pointer to struct type

12 std::cout << ptr ->member << std::endl;

13 }

Output:

10

2.2 struct Initialization

C++ provides several ways to initialize a struct. Initializer lists can assign
values to members in the order they were declared within the struct definition:

1 struct Point

2 {

3 int x;

4 int y;

5 };

6

7 Point p { 3, 4 }; // p.x = 3, p.y = 4

Designators can be used to initialize struct members by name:

1 struct Point

2 {

3 int x;

4 int y;

5 };

6

7 Point p { .y = 4, .x = 3 }; // p.x = 3, p.y = 4

8

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

Default member values can be provided directly in the struct definition. If no
initializer is used when creating an instance, these default values will be used.

1 struct Point

2 {

3 int x = 1;

4 int y = 1;

5 };

6

7 Point p; // p.x = 1, p.y = 1

8 Point q { 2, 2 }; // q.x = 2, q.y = 2

9 Point r { 0 }; // r.x = 0, r.y = 1

If you have an existing instance, you can initialize a new instance by copying
the values of the existing one:

1 struct Point

2 {

3 int x = 1;

4 int y = 1;

5 };

6

7 Point p { 15, 16 }; // p.x = 15, p.y = 16

8 Point q { p }; // q.x = 15, q.y = 16

9 Point r = q; // r.x = 15, r.y = 16

2.3 Member Functions

We may want to define a function to act on a struct variable:

1 #include <iostream >

2

3 struct Point

4 {

5 int x, y;

6 };

7

8 void print_point(Point p)

9 {

10 std::cout << "{" << p.x << ", " << p.y << "}";

11 std::cout << std::endl;

12 }

This function can be called with an instance of the struct:

9

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

1 int main()

2 {

3 Point p { 14, 6 };

4 print_point(p);

5 }

Output:

{14, 6}

Alternatively, in C++, a struct can contain functions as members. These
functions can operate directly on the data members of the struct.

1 #include <iostream >

2

3 struct Point

4 {

5 int x, y;

6 void print();

7 };

8

9 // define Point.print() with resolution operator ::

10 Point::print()

11 {

12 std::cout << "{" << p.x << ", " << p.y << "}";

13 std::cout << std::endl;

14 }

15

16 int main()

17 {

18 Point p { 14, 6 };

19 p.print(); // {14, 6}

20 }

The member function can also be defined within the struct definition:

1 struct Point

2 {

3 int x, y;

4 void print()

5 {

6 // ...

7 }

8 };

10

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

3 Classes

A class is a user-defined datatype that typically has a collection of data and
functionality associated with it. An instance of a class is known as an object:

1 class MyClass // define a class

2 {

3 // ...

4 };

5

6 int main()

7 {

8 MyClass MyObject; // instantiate an object

9 // of type ‘MyClass ’

10 }

Classes can have data and functionality associated with them.

3.1 Access Specifiers public, private, protected

Access specifiers in C++ control the visibility of class and struct members.
There are three types: public, private, and protected.

• public: Accessible from anywhere, both inside and outside the class.

• private: Accessible only from within the same class.

• protected: Accessible from within the same class and subclasses.

1 class MyClass

2 {

3 public:

4 int public_int;

5 void foo() { private_int = 10; } // ok

6

7 private:

8 int private_int;

9 }

10

11 int main()

12 {

13 MyClass m;

14 m.public_int = 10; // ok

15 m.private_int = 10; // error: cannot access

16 }

11

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

3.1.1 class vs. struct

Functionally, the only difference between a class and a struct is the default
member visibility. struct members are public by default, while class mem-
bers are private by default. This means that the following definitions:

1 struct Point

2 {

3 int x, y;

4 Point();

5 }

and

1 class Point

2 {

3 public:

4 int x, y;

5 Point();

6 }

are entirely equivalent, at least as far as C++ is concerned. However, most
developers make a strong mental distinction. A struct is (or ought to be)
plain-old-data; a group of bits with very little in the way of encapsulation or
complex functionality. A class, on the other hand, is a functional body with en-
capsulation, intelligent functionality, and maybe a Costco membership. Hence,
you should probably use struct for types with few methods and only public

data, and use class otherwise.

3.2 Constructors

A constructor is a special member function whose purpose is to initialize the
data within an object. Constructors share the same name as the class to which
they belong. The basic syntax for a constructor is as follows:

1 class MyClass

2 {

3 public:

4 MyClass () // constructor for MyClass

5 {

6 // ...

7 }

8 };

Notice that the constructor has no return type, because its only purpose is to

12

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

initialize the data within an object. A default constructor is one that either
takes no arguments or has default values for all of its arguments. The default
constructor can be defined by the programer, otherwise the compiler will create
one. The programmer can also explicitly mark a constructor as default:

1 class Point

2 {

3 private:

4 int x, y;

5

6 public:

7 Point() = default;

8 };

Constructors can take input arguments, allowing for initialization:

1 class Point

2 {

3 private:

4 int x, y;

5

6 public:

7 Point() = default;

8 Point(int x, int y)

9 {

10 this ->x = x; // .x = x

11 this ->y = y; // .y = y

12 }

13 };

Alternatively, constructors can initialize member variables with an initialization
list. The initialization list appears before the constructor body and uses a colon
: followed by a comma separated list of member variables:

1 class Point

2 {

3 private:

4 int x, y;

5

6 public:

7 Point() = default;

8 // initializer list constructor

9 Point(int x, int y): x(x), y(y) {}

10 };

13

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

Initializer lists are generally preferred to constructor bodies for initializing class
data. They are strictly necessary for initializing const and reference members,
because these members cannot be assigned within the constructor body. They
may also be fore efficient because, rather than default initialization followed
by assignment, initializer lists directly initialize member variables. Member
variables are initialized in the order they are declared, regardless of the order
they are in the list itself.

We may have a class where we want to ensure it is called with an initializer.
C++ provides a very elegant way to do this, by deleting the default constructor:

1 class Point

2 {

3 private:

4 int x, y;

5

6 public:

7 Point() = delete;

8 // initializer list constructor

9 Point(int x, int y): x(x), y(y) {}

10 };

3.3 Destructors

A destructor is a special member function within a class whose purpose is to
perform cleanup actions when an object is destroyed. A destructor for a class

called MyClass would have the name ~MyClass().

1 class C

2 {

3 public:

4 int* data;

5

6 C(int size)

7 {

8 data = new int[size];

9 }

10

11 ~C()

12 {

13 delete [] data;

14 }

15 };

14

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

3.4 static Members

Recall from How C++ Works that static memory is initialized only once before
runtime. So what happens if we mark a class member as static?

1 class Point

2 {

3 private:

4 int x, y;

5

6 public:

7 static int n; // static member variable

8

9 Point() = delete;

10 Point(int x, int y): x(x), y(y) {}

11 };

Because the variable n is given a place in memory at compile time, it exists
even before a single instance of the Point class is created. This means we can
access Point::n without needing an object:

1 // class Point ...

2

3 int Point::n { 50 };

4

5 int main()

6 {

7 std::cout << Point ::n << std::endl;

8 }

Notice how, with respect to n, the Point class is behaving somewhat like a
namespace. In essence, n belongs to the Point class itself, rather than any
one Point object. A more realistic example of a static member is as follows:

1 class Point

2 {

3 private:

4 int x, y;

5

6 public:

7 static int n_points;

8

9 Point() = delete;

10 Point(int x, int y): x(x), y(y) { ++ n_points; }

11 ~Point() { --n_points; }

15

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

12 };

13

14 int Point:: n_points { 0 };

In the above code, we maintain a static variable representing the number of
Point objects we have created. We increment this variable in the Point()

constructor, and decrement it within the destructor.

1 #include <iostream >

2

3 // class Point ...

4

5 int main()

6 {

7 std::cout << Point :: n_points << " ";

8 {

9 Point p(0, 0);

10 std::cout << Point:: n_points << " ";

11 {

12 Point q(1, 1);

13 std::cout << Point :: n_points << " ";

14 }

15 std::cout << Point:: n_points << " ";

16 }

17 std::cout << Point :: n_points << " ";

18 }

Output:

0 1 2 1 0

3.4.1 static Member Functions

The static keyword can also be used to qualify member functions. Similar to
static member variables, static member functions belong to the class rather
than to any one object.

1 #include <iostream >

2

3 class Point

4 {

5 private:

6 int x, y;

7

16

Ryan Baker Introduction to OOP in C++ Introduction to Modern C++

8 public:

9 static int n_points;

10

11 Point() = delete;

12 Point(int x, int y): x(x), y(y) { ++ n_points; }

13 ~Point() { --n_points; }

14

15 static void print_n () // static method

16 {

17 std::cout << Point:: n_points << std::endl;

18 }

19 };

20

21 int Point:: n_points { 0 };

static member functions can only access static member variables. After all,
how could they access the member variables belonging to an object when they
themselves do not belong to an object?

17

