
How C++ Works

Introduction to Modern C++

Ryan Baker

February 22, 2025

“There are two hard problems in computer science:
cache invalidation, naming things, and off-by-1 errors.”

Lecture Objectives

• To understand the C++ build process at a high level.

• To become familiar with pointers and pointer arithmetic.

• To understand references and how they differ from pointers.

• To understand the memory layout and segmentation of a C/C++
program as well as static memory.

• To become acquainted with keywords new and delete, and
their role in dynamic memory allocation.

Ryan Baker How C++ Works Introduction to Modern C++

Contents

1 The C++ Build Process 2
1.1 The Preprocessor . 2

1.1.1 Text Replacement #define 2
1.1.2 Conditional Compilation #if, #ifdef, #else, #elif . . . 4
1.1.3 File Inclusion #include 5
1.1.4 Header Files .h, .hpp . 7
1.1.5 Translation Units . 7

1.2 The Compiler . 8
1.2.1 Compilation Process . 8
1.2.2 Compiler Output . 11

1.3 The Linker . 11

2 Pointers 12
2.1 NULL Pointers . 13
2.2 Pointer Arithmetic . 14
2.3 Pointers to Pointers . 16
2.4 const Pointers . 16

3 References 17
3.1 Passing by Reference . 18
3.2 const References . 19

4 Memory Segments 20
4.1 Text Segment . 20
4.2 Static Memory . 20

4.2.1 Initialized Data . 20
4.2.2 Uninitialized Data . 21
4.2.3 static Keyword . 21

4.3 Heap Segment . 23
4.3.1 Operators new and delete 23

4.4 Stack Segment . 25
4.4.1 Stack Overflow . 26

1

Ryan Baker How C++ Works Introduction to Modern C++

1 The C++ Build Process

Recall that C++ is a compiled language. This means that source code is trans-
lated into machine-readable instructions in the form of an executable. The
process by which this translation occurs is known as the build process.

The process is split into three steps: preprocessing, compilation, and linking:

.cpp → Preprocessor → Compiler → Linker → .exe

1.1 The Preprocessor

The preprocessor’s job is to edit the source code text according to a set of pre-
processor directives. Preprocessor directives begin with #, and aren’t keywords.

1.1.1 Text Replacement #define

The #define directive is used to define macros. It instructs the preprocessor to
replace any occurrence of a qualifier string with a replacement string. This, for
example, allows you to #define constants:

1 #include <iostream >

2

3 #define PI 3.14159 // replace ‘PI’ with ‘3.14159’

4

5 int main()

6 {

7 std::cout << PI << std::endl;

8 }

Above, the preprocessor replaces every instance of PI with 3.14159. Note that
the preprocessor has no knowledge of C++ semantics, it performs only simple
text substitution. Hence, it has no idea that you plan to treat PI like a double.

#define can also define function-like macros, capable of accepting arguments:

1 #include <iostream >

2

3 #define SQUARE(x) ((x) * (x))

4 #define MAX(a, b) ((a) > (b) ? (a) : (b))

5

6 int main()

7 {

8 std::cout << SQUARE (5) << std::endl; // 25

9 std::cout << MAX(2, 3) << std::endl; // 3

10 }

2

Ryan Baker How C++ Works Introduction to Modern C++

Note that the seemingly excessive use of parentheses helps to ensure that the
intended order of operations is respected. Omitting the parentheses can lead to
unexpected behavior:

1 #include <iostream >

2

3 #define SQUARE(x) x * x // no parentheses!

4

5 int main()

6 {

7 int a { 2 };

8 int b { 4 };

9

10 // should be 36 = 6 * 6

11 std::cout << SQUARE(a + b) << std::endl;

12 }

Output:

14

The reason we see 14 is that SQUARE(a + b) was expanded into a + b * a + b

according to the macro definition, and our intended order of operations was not
respected. Function-like macros are notorious for their unexpected behavior,
even when defined with parentheses:

1 #include <iostream >

2

3 #define SQUARE(x) ((x) * (x))

4

5 int main()

6 {

7 int a { 1 };

8 std::cout << SQUARE (++a) << std::endl;

9 std::cout << a << std::endl;

10 }

Output:

6

3

Above, multiple modifications happen to a on the same line: ((++a) * (++a)),
hidden from us by the function-like macro.

3

Ryan Baker How C++ Works Introduction to Modern C++

The #undef directive can be used to undefine a macro:

1 #include <iostream >

2

3 int main()

4 {

5 #define A 42

6

7 std::cout << A << std::endl;

8

9 #undef A // done with A

10

11 // std::cout << A << std::endl; error!

12 }

It is generally good practice to #undef macros as soon as possible to prevent
symbol and naming conflicts.

Dear reader,

If you sense my slight disdain for #define’d macros, you are correct. As a
rule: the compiler is smart; the preprocessor is stupid. The compiler
enforces safety and optimizes your code, while the preprocessor merely performs
text substitution. Hence, whenever possible, leave work up to the compiler. In
the age of modern C++, there is very rarely a good reason to use #define for
defining constants or function-like macros.

1.1.2 Conditional Compilation #if, #ifdef, #else, #elif

The preprocessor provides various ways to conditionally pass code to the com-
piler. The #if directive evaluates a condition and decides whether or not to
pass the subsequent block of code the compiler. #if, #else and #elif (else-if)
can be used in conjunction to create preprocessor branching behavior:

1 #include <iostream >

2

3 #define DEBUG 1

4

5 int main()

6 {

7 #if (DEBUG) // only compile the following code

8 // if DEBUG is true

9 std::cout << "debugging ..." << std::endl;

10 #endif // end the #if block

11 }

4

Ryan Baker How C++ Works Introduction to Modern C++

The #ifdef directive includes the block of code if the macro passed is #define’d.
Similarly, #ifndef includes the block if the macro passed is not #define’d:

1 #include <iostream >

2

3 #define DEBUG // define DEBUG macro

4

5 int main()

6 {

7 #ifdef (DEBUG) // only compile the following code

8 // if ‘DEBUG’ is defined

9 std::cout << "debugging ..." << std::endl;

10 #endif // end the #if block

11 }

A very common use of conditional compilation is include guards. An include
guard’s purpose is to prevent the same file from being included multiple times
within a translation unit, which would cause compilation errors. An include
guard for a file called class.h might look like this:

1 #ifndef CLASS_H

2 #define CLASS_H

3

4 // class.h contents

5

6 #endif // CLASS_H

When we #include "class.h" for the first time, the symbol CLASS_H has not
yet been #define’d, hence the code block containing the contents of class.h
will be compiled. If the file is #include’d again, CLASS_H is #define’d, and
compilation is blocked.

1.1.3 File Inclusion #include

If you’ve followed this course to a tee, #include is the first word you wrote
within a C++ file. #include is used to include the contents of other files:

1 #include <iostream > // contents of iostream

There are two subtly different variations of #include: angle brackets <> and
quotes "":

1 #include <iostream > // angle brackets include

2 #include "myfile.h" // quotes include

5

Ryan Baker How C++ Works Introduction to Modern C++

The difference lies in where the preprocessor searches for the #include’d file. In
the case of angle brackets <>, it will search the include path, which is a special
directory (or list of directories) on your machine that contain various library
and header files. With clang, on macOS, I can view the include path with the
following command:

1 $ clang++ -E -x c++ - -v < /dev/null

When quotes "" are used, the preprocessor first searches the current directory,
then the include path. Hence, by convention, you should use the angle brackets
for standard includes (e.g., iostream, chrono, etc.) and quotes for everything
else.

The #include directive is simply a “copy and paste” directive. It searches for
the #include’d file, and pastes its contents in place. To demonstrate that
this is all it does, consider the following (rather foolish) implementation of
helloworld.cpp:

1 // message.cpp

2 "Hello , World!"

1 // cout.cpp

2 std::cout <<

3 #include "message.cpp"

4 << std::endl;

1 // curly_braces.cpp

2 {

3 #include "cout.cpp"

4 }

1 // main.cpp

2 int main()

3 #include "curly_braces.cpp"

1 // helloworld.cpp

2 #include <iostream >

3 #include "main.cpp"

Preemptive conscription should be extended to the author of any such program.

6

Ryan Baker How C++ Works Introduction to Modern C++

1.1.4 Header Files .h, .hpp

Header files are used to organize code within large projects. They are typically
used to declare an interface of a module or a library. However, as usual in C++,
there are no strict rules about what can be put into a header file.

1 // mylib.h

2

3 void greet(); // declare a function greet()

4

5 int foo(int x, int y); // declare a function foo()

Above, mylib.h is a header file that has declarations for two functions. The defi-
nition, or implementation, of these functions would typically go into mylib.cpp:

1 // mylib.cpp

2 #include <iostream >

3 #include "mylib.h"

4

5 void greet()

6 {

7 std::cout << "Hello from MyLib!" << std::endl;

8 }

9

10 void foo() { /* ... */ }

Separating declarations and definitions across header files (.h) and source files
(.cpp) is a very common practice that enhances code readability, reusability,
and modularity. Often times, C++ developers choose to use the .hpp extension
rather than .h to emphasize that the header file contains C++-specific features.

1.1.5 Translation Units

The preprocessor outputs a unit called a translation unit. A translation unit
is the preprocessed result of a single source file, with all #include directives
expanded. This means that the preprocessor output is still valid C++ code:

1 $ clang++ -E main.cpp > preprocessor_output.cpp

The above command redirects the preprocessor’s output into a C++ file called
preprocessor output.cpp. This file can be compiled and run:

1 $ clang++ preprocessor_output.cpp && ./a.out

and will always produce the same output as main.cpp.

7

Ryan Baker How C++ Works Introduction to Modern C++

1.2 The Compiler

The compiler is responsible for converting C++ code (text) into an object file.
The compiler works on, or translates, single translation units.

1.2.1 Compilation Process

What follows is a brief overview of the compilation process. This is by no means
the best resource for learning about C++ compilers. Compiler writing is an art
and a science in and of itself, and this section is only intended to give a very
high level overview of the steps taken.

1. Lexical Analysis (Tokenization)

The first step is breaking the code into tokens – the smallest meaningful
units, such as keywords (int, for, return), identifiers (x, foo), operators
(+, -, ==), symbols ({, }, ;) For example:

1 int sum = a + b;

might be tokenized as:

1 [int] [sum] [=] [a] [+] [b] [;]

At this stage, if the compiler encounters an invalid symbol, such as an
extraneous $, it will throw an error.

2. Syntax Analysis (Parsing)

Next, the compiler checks grammar rules to ensure the code structure is
correct. For example, this is valid:

1 int x = 42;

while this is not:

1 42 = ;x int

even though both lines used the same set of symbols. If the syntax is
incorrect, the compiler throws a syntax error. The syntax analyzer, or the
parser, constructs a parse tree as its output.

3. Semantic Analysis

The compiler next scans the parse tree for logical correctness. An example
of code that would pass the syntax analysis but fail here is:

8

Ryan Baker How C++ Works Introduction to Modern C++

1 int x = "forty -two";

because assigning a string to an integer is senseless.

4. Intermediate Code Generation

Now that the code has been verified semantically, the compiler generates
intermediate representation that is independent of the target machine.
This makes it easier to optimize and port the program to different archi-
tectures.

5. Optimization

The compiler then attempts to make the final executable faster, smaller,
or otherwise more efficient without changing its functionality. Modern
compilers are very sophisticated with the optimizations they can perform.
Some basic optimization strategies are as follows:

• Constant folding: Replacing constant expressions at compile-time:

1 int weeks { 365 / 7 };

can be optimized into:

1 int weeks { 52 };

• Loop Hoisting: Removing repeated calculations from a loop body:

1 for (int i = 0; i < 1000; ++i)

2 {

3 int k = some_expensive_calculation ();

4 std::cout << i * k << std::endl;

5 }

can be optimized into:

1 int k = some_expensive_calculation ();

2 for (int i = 0; i < 1000; ++i)

3 {

4 std::cout << i * k << std::endl;

5 }

because the value of k does not depend on the loop iteration. The
compiler will also ensure that k maintains its intended narrower
scope.

9

Ryan Baker How C++ Works Introduction to Modern C++

• Dead code elimination: Removing code that will never execute:

1 void foo()

2 {

3 std::cout << "fooing ..." << std::endl;

4 return;

5 // this code is dead , compiler ignores

6 std::cout << "dead code" << std::endl;

7 }

• Common expression removal: Avoiding redundant computations:

1 int a { x * y };

2 int b { x * y * z };

can be optimized into:

1 int a { x * y };

2 int b { a * z }; // avoid redundant x * y

In general, you should not sacrifice your code’s readability in an attempt
to make menial performance improvements because the compiler will do
it better than you. For example, I have seen this code:

1 int log10(int n) // find floor(log10(n))

2 {

3 int log { -1 };

4 for (int i = 1; i <= n; ++log)

5 {

6 i = (i << 3) + (i << 1);

7 }

8 return log;

9 }

Here, the programmer clearly thought they were very clever, optimizing
i *= 10 into i = (i << 3) + (i << 1), when in reality any compiler
worth its own weight in salt would make this optimization in a heartbeat
and not hurt the readers eyes in the process.

I am not claiming that you shouldn’t attempt to optimize your code, rather
that you generally shouldn’t attempt micro-optimizations that hurt read-
ability because the compiler will do those for you. Algorithmic improve-
ments, on the other hand, ale always welcome. The compiler is helpless
at finding those.

10

Ryan Baker How C++ Works Introduction to Modern C++

6. Code Generation

In this final compilation phase, the compiler maps the optimized inter-
mediate representation into targeted machine code that the computer’s
processor can execute.

1.2.2 Compiler Output

The output of a C++ compiler is an object file, which typically has a .o or .obj
extension on Unix-like systems. With clang, we can use the -c (just compile)
flag to produce these object files:

1 $ clang++ -c main.cpp

produces main.o, the compiled output of main.cpp’s translation unit. Alterna-
tively, -S can be used to generate the assembly output:

1 $ clang++ -S main.cpp

produces main.s, the assembly output of compiling main.cpp’s translation unit.

1.3 The Linker

The linker is a program that combines multiple object files into a single exe-
cutable file. It resolves external references such as function calls and variable
accesses by finding the corresponding definitions in other object files or libraries.
Take for example the following project comprising three files:

1 // header.h

2 void foo();

1 // header.cpp

2 #include <iostream >

3 #include "header.h"

4 void foo() { /* ... */ }

1 // main.cpp

2 #include "header.h"

3

4 int main()

5 {

6 foo();

7 }

11

Ryan Baker How C++ Works Introduction to Modern C++

We may attempt to build this project like such:

$ clang++ -std=c++23 main.cpp

However, this will produce a linker error:

1 Undefined symbols for architecture arm64:

2 "foo()", referenced from:

3 _main in main -71204a.o

4 ld: symbol(s) not found for architecture arm64

This occurs because the linker cannot find the definition of foo(). After all, how
could it? We never told clang that the source file containing foo()’s definition
exists. To fix this, we can pass both main.cpp and header.cpp to the compiler:

$ clang++ -std=c++23 main.cpp header.cpp

Here, clang compiles both source code files into two separate object files.
main.cpp’s object file contains a dangling reference to foo(), and it is the
linker’s responsibility to resolve this reference.

2 Pointers

A pointer is an integer variable that represents a memory address, often the
address of another variable. Pointers “point” to locations in memory.

A pointer is declared using an asterisk * and the type of the data it points to:

1 int* ptr; // declares a pointer to an int

To “point” a pointer at an int variable, we use the address-of operator &:

1 int* ptr;

2 int x {};

3 ptr = &x; // ‘point’ ptr to the address of x

To access the value stored at the memory address a pointer is pointing to, we
use the dereference operator *:

1 #include <iostream >

2

3 int main()

4 {

5 int x { 42 };

12

Ryan Baker How C++ Works Introduction to Modern C++

6 int* ptr { &x };

7

8 // dereference ptr to get x’s value

9 std::cout << "x = " << *ptr << std::endl;

10 }

Output:

x = 42

Since pointers provide direct access to memory, they can be used to modify
variables indirectly:

1 #include <iostream >

2

3 int main()

4 {

5 int x { 42 };

6 int* ptr { &x };

7 (*ptr)++; // increment x indirectly

8

9 std::cout << "x = " << x << std::endl;

10 }

Output:

x = 43

2.1 NULL Pointers

A NULL pointer in C++ indicates the absence of a valid memory address. The
keyword nullptr was introduced in C++11 to represent a NULL pointer.

1 #include <iostream >

2

3 int main()

4 {

5 int* ptr { nullptr };

6 std::cout << ptr << std::endl; // 0x0

7 }

Dereferencing a NULL pointer causes undefined behavior, often leading to seg-
mentation faults:

13

Ryan Baker How C++ Works Introduction to Modern C++

1 #include <iostream >

2

3 int main()

4 {

5 int* ptr { nullptr };

6 std::cout << *ptr << std::endl; // error

7 }

Output:

[1] 90374 segmentation fault ./a.out

NULL pointers are commonly used as default values for pointers or as return val-
ues to signify errors. NULL pointer error handling is one common use case for the
short-circuiting behavior of the && operator (described in C++ Programming
Basics):

1 int main()

2 {

3 int* ptr = foo(); // may return nullptr

4

5 // only attempt deref if ptr != nullptr

6 if (ptr != nullptr && *ptr == /* ... */)

7 {

8 // ...

9 }

10 }

2.2 Pointer Arithmetic

Pointers support arithmetic operations that allow movement through mem-
ory. Since memory is byte-addressable, incrementing a pointer moves it by
sizeof(type) bytes:

00 01 02 03 04 05 06 07 08
Memory

int* ptrptr-- ptr++

sizeof(int) sizeof(int)

14

Ryan Baker How C++ Works Introduction to Modern C++

Adding an integer n to a pointer will adjust the pointer by n elements, i.e. move
it by n × sizeof(type) bytes.

1 #include <iostream >

2

3 int main()

4 {

5 int x { 42 };

6 std::cout << sizeof(x) << std::endl;

7

8 int* ptr { &x };

9 std::cout << ptr << std::endl;

10

11 // increment by sizeof(int) bytes

12 ++ptr;

13 std::cout << ptr << std::endl;

14

15 // move back by 2 * sizeof(int) bytes

16 ptr -= 2;

17 std::cout << ptr << std::endl;

18 }

Output:

4

0x16b84ed9c

0x16b84eda0

0x16b84ed98

Subtracting two pointers of the same type will return the number of elements
present between the two memory locations, i.e. int(ptr2) - int(ptr1)

sizeof(type)
:

1 #include <iostream >

2

3 int main()

4 {

5 int a, b, c, d, e, f;

6 int *ptr1 { &a }, *ptr2 { &f };

7 std::cout << (ptr1 - ptr2) << std::endl;

8 }

Output:

5

15

Ryan Baker How C++ Works Introduction to Modern C++

Pointers of the same type can be compared:

1 int a { 0 };

2 int* ptr1 { &a };

3 int* ptr2 { &a + 1 };

4

5 std::cout << (ptr1 < ptr2) << std::endl;

6 std::cout << (ptr1 == ptr2) << std::endl;

Output:

1

0

2.3 Pointers to Pointers

Pointers can point to other pointers. If you understand pointers at a fundamen-
tal level then this will not be confusing.

1 #include <iostream >

2

3 int main()

4 {

5 int x { 42 };

6 int* ax { &x };

7 int** aax { &ax };

8 int*** aaax { &aax };

9

10 // triple dereference ‘aaax’ to get x’s value

11 std::cout << *** aaax << std::endl;

12 }

Output:

42

This creates multiple levels of indirection, allowing for more complex data struc-
tures such as multidimensional arrays or graphs.

2.4 const Pointers

A constant pointer is a pointer whose address, or the value it points to, or both
cannot be modified. There are three variations of constant pointers in C++:

16

Ryan Baker How C++ Works Introduction to Modern C++

1. Pointer to a constant: const T* ptr;

This type of pointer points to a constant value, but the pointer itself can
be changed to point elsewhere.

1 int x { 29 };

2 const int* ptr { &x };

3

4 x++; // ok

5 (*ptr)++; // not ok

6 ptr++; // ok

2. Constant pointer: T* const ptr;

These pointers cannot be changed to point elsewhere, but the data they
point to can be modified.

1 int x { 29 };

2 const int* ptr { &x };

3

4 x++; // ok

5 (*ptr)++; // ok

6 ptr++; // not ok

3. Constant pointer to a constant: const T* const ptr;

These pointers are completely immutable. We cannot change its address,
and the value it points to also cannot be modified through the pointer.

1 int x { 29 };

2 const int* const ptr { &x };

3

4 x++; // ok

5 (*ptr)++; // not ok

6 ptr++; // not ok

3 References

In C++, a reference is an alias for an existing variable. Unlike pointers, refer-
ences cannot be reassigned and must always refer to a valid object. They often
provide a more convenient and safer way to pass and manipulate data indirectly.

References are declared using an ampersand & and the type of data it refers to.
References must be initialized to refer to a variable at the time they are defined:

17

Ryan Baker How C++ Works Introduction to Modern C++

1 int x { 42 };

2 int& ref { x }; // ref is an alias for x

Now, ref and x refer to the same memory. Changes made to one will affect the
other directly:

1 #include <iostream >

2

3 int main()

4 {

5 int x { 42 };

6 int& ref { x };

7

8 ref++;

9 std::cout << x << std::endl; // 43

10 }

3.1 Passing by Reference

References are commonly used as input arguments to functions:

1 void increment(int& n)

2 {

3 ++n;

4 }

There are two primary reasons a programmer might choose to do this. First,
the programmer may want the function to modify the original variable passed:

1 #include <iostream >

2

3 void increment(int& n) { ++n; }

4

5 int main()

6 {

7 int x { 0 };

8

9 increment(x);

10 increment(x);

11

12 std::cout << x << std::endl;

13 }

18

Ryan Baker How C++ Works Introduction to Modern C++

Output:

2

Because x is passed by reference into increment, any modification to the vari-
able within the function will also modify x.

The second reason one might choose to pass by reference is to avoid copying a
large object:

1 struct EnormousStruct

2 {

3 int x[99999];

4 };

5

6 void func(EnormousStruct& s) { /* .. */ }

Above, we avoid copying 99999 integers with every call to func by passing our
EnormousStruct by reference. Some programmers have a misconception that it
is always better to pass by reference to avoid copies and improve performance.
On the contrary, passing trivially copyable objects by reference may actually
hurt performance. This is because passing by reference is simply syntax sugar for
passing by pointer, and pointers themselves are often larger and more expensive
than simple pieces of data.

3.2 const References

A reference can be declared as const, preventing modifications to the original
value via the reference. This is often useful for passing large objects efficiently
without allowing changes.

1 #include <iostream >

2

3 int main()

4 {

5 int x { 42 };

6 const int& y { x };

7

8 x++; // okay

9 // y++; // not okay

10

11 std::cout << x << " " << y << std::endl;

12 }

Constant references are most often used in the context of function parameters.

19

Ryan Baker How C++ Works Introduction to Modern C++

4 Memory Segments

When a C++ program is executed, the operating system allocates memory for
it to use, which is conceptually divided into segments. Each segment serves a
different purpose and has distinct characteristics.

RAM

Stack

Heap

BSS

Initialized Data

Text

S
ta
tic F

rom
e
x
e

0’ed

D
y
n
am

ic
R
/
O

High Addresses

Low Addresses

4.1 Text Segment

The text segment, also known as the code segment, contains the instructions for
executing the program. This segment is read-only to prevent the program from
overwriting its own instructions while it’s running. The text segment is fixed in
size and is read directly from the executable. The text segment also stores any
"string literals" present within your program.

4.2 Static Memory

Static memory is memory that is allocated at compile-time. This memory is
initialized before the program begins and persists throughout execution. Static
memory is divided into initialized and uninitialized static data.

4.2.1 Initialized Data

The initialized data segment holds initialized global and static variables. This
segment is also read directly from the executable, and is fixed in size.

1 #include <iostream >

2

3 int a { 10 }; // initialized data

20

Ryan Baker How C++ Works Introduction to Modern C++

4 int main()

5 {

6 static int b { 20 }; // initialized data

7 }

4.2.2 Uninitialized Data

The uninitialized data segment, also known as the BSS segment, stores unini-
tialized static and global variables. BSS stands for “block started by symbol”,
which refers to an old assembly directive used to initialize a block of memory
to 0. As such, data in the BSS segment is initialized to 0.

1 #include <iostream >

2

3 int a { 10 }; // initialized data

4 int c; // uninitialized data

5

6 int main()

7 {

8 static int b { 20 }; // initialized data

9 static int d; // uninitialized data

10 }

You may wonder, if we initialize the BSS segment to 0, then why bother splitting
static memory into initialized vs. uninitialized data? Why not simply place all
data into the initialized section? Consider the following case:

1 #include <iostream >

2

3 int arr [1000000]; // static array

4

5 int main() {}

Recall that the initialized data segment is read directly from the executable;
meaning that if this array were stored in the initialized data segment, all one
million zeros would need to be written to the executable. However, because it’s
stored in the BSS segment, only its size needs to be stored, leading to a smaller
executable file.

4.2.3 static Keyword

The static keyword in C++ modifies the lifetime and visibility of variables. It
can be used in two main contexts (for now): inside functions and outside func-
tions. static used within a function is used to create a static local variable:

21

Ryan Baker How C++ Works Introduction to Modern C++

1 #include <iostream >

2

3 void counter ()

4 {

5 static int count { 0 };

6 std::cout << ++count << std::endl;

7 }

8

9 int main()

10 {

11 counter ();

12 counter ();

13 counter ();

14 }

Because static memory is allocated once at compile time, the local variable
count will retain its value between calls to counter(). Hence, the output is:

1

2

3

If the above code example causes you confusion, consider this:

1 #include <iostream >

2

3 int count { 0 };

4 void counter ()

5 {

6 std::cout << ++count << std::endl;

7 }

8

9 int main()

10 {

11 counter ();

12 counter ();

13 counter ();

14 }

This program’s behavior is much more clear, and it will have the same output as
the first example. The only difference, and the primary benefit of using static

local variables, is that count is scoped to counter() rather than the global
namespace.

22

Ryan Baker How C++ Works Introduction to Modern C++

A static variable or function declared within the global namespace is only
visible within that file. This is known as internal linkage. These symbols are
“private” to the translation unit in which they are declared.

1 // file1.cpp

2 #include <iostream >

3

4 int main()

5 {

6 extern int x;

7 std::cout << x << std::endl;

8 }

1 // file2.cpp

2 int x { 300 };

Compiling these two files together and running yields the expected result:

300

If, however, we declare x to be static within file2.cpp:

1 // file2.cpp

2 static int x { 300 };

we get a linker error. This is because x now has internal linkage, and is thus no
longer visible within file1.cpp.

4.3 Heap Segment

The heap segment, unlike the other segments we’ve seen so far, is variable in
size. It is also the segment that you, as the programmer, have the most direct
control over. The heap allows us to create dynamic data structures, such as lists
whose sizes cannot be determined at compile time.

4.3.1 Operators new and delete

Dynamic memory management in C/C++ refers to manually allocating and
deallocating memory on the heap. In C, this is typically done with functions
malloc() and free(). C++, on the other hand, provides operators new and
delete. The new operator denotes a memory allocation:

1 int* ptr = new int; // allocates an integer

23

Ryan Baker How C++ Works Introduction to Modern C++

The ptr variable can now be treated like any other pointer. We can also initialize
the allocated memory for built-in types using constructor ():

1 int* ptr = new int (10);

The new operator can also be used to allocate a block of memory:

1 char* chars = new char [10];

The above code allocates space for 10 characters to be stored contiguously and
returns a pointer to the first element:

00 01 02 03 04 05 06 07 08 09
Memory

chars

sizeof(char)

It is the programer’s responsibility to deallocate dynamically alloced memory.
The delete operator is provided for this task. In general, a call to delete

should follow every call to new within your program.

1 #include <iostream >

2

3 int main()

4 {

5 int* ptr = new int;

6 // use ptr

7 delete ptr; // free memory associated with ptr

8 }

Failure to call delete properly can lead to memory leaks. Memory leaks occur
when a program continuously claims heap memory and never returns it. The
following program is a quintessential example of a memory leak:

1 #include <iostream >

2

3 int main() {

4 while (true)

5 int* ptr = new int [1000];

6 }

24

Ryan Baker How C++ Works Introduction to Modern C++

One final note about new and delete: calls to each operator should take the
same form. This means that if you use [] when you call new, then you should
use [] when you call delete. If you don’t use [] when you call new, then you
should not use [] when you call delete. An example to illustrate:

1 #include <iostream >

2 #include <string >

3

4 using std:: string;

5

6 int main()

7 {

8 string* arr = new string [10];

9 // do something with arr...

10 delete arr;

11 }

In the above example, 9 of the 10 strings allocated are unlikely to be properly
disposed of in the call to delete. This is because, unless you tell it otherwise,
operator delete assumes it is freeing memory for only one object. Hence, to
properly clean up the memory in the above example, use

1 delete [] arr;

This tells the compiler that you intend to delete an array of objects, allowing
all 10 strings to be properly destroyed.

4.4 Stack Segment

The stack segment is the segment that manages function calls, local variables,
and arguments. It operates in last in, first out fashion, meaning the most
recently added data is removed first. Stack memory is not default initialized.

When a function is called, a stack frame is created for it. This frame contains the
function’s return address, parameters, and any local variables declared within
the function. When the function returns, its stack frame is removed. This all
happens automatically without need for programmer intervention.

1 #include <iostream >

2

3 void foo()

4 {

5 int x { 10001 };

6 }

7

25

Ryan Baker How C++ Works Introduction to Modern C++

8 void bar()

9 {

10 int y;

11 std::cout << y << std::endl;

12 }

13

14 int main()

15 {

16 foo();

17 bar();

18 }

In the above example, we call foo() which initializes a local integer x to 10001.
We then call bar(), which declares an integer y, but does not initialize it. y
is printed. Technically, the output of the above code is undefined, meaning the
C++ standard does not guarantee it. However, with knowledge of how the stack
operates, we can predict the output.

Stack memory is not initialized, and neither foo() nor bar() accept input
arguments. This means that y from bar() will occupy the same memory as x
from foo(). Hence, unless the compiler does some dirty magic and overwrites
the memory, the output will be:

10001

4.4.1 Stack Overflow

Stack overflow occurs when the size of a program’s stack exceeds the maximum
stack size. Often this indicates an endless recursion:

1 void foo()

2 {

3 foo();

4 }

5

6 int main()

7 {

8 foo();

9 }

Above, the function foo() calls itself repeatedly, pushing another frame onto
the stack with each call. Eventually, this breaks the limit of the stack’s size,
and a segmentation fault occurs.

26

