
C++ Programming Basics

Introduction to Modern C++

Ryan Baker

February 15, 2025

Lecture Objectives

• To understand how and why we use functions in C++.

• To understand the notion of scope and how it relates to variable
lifetimes and visibility.

• To leverage conditions and branching to alter program flow.

• To understand the semantics of various branching constructs.

• To become familiar with looping constructs in C++.

Ryan Baker C++ Programming Basics Introduction to Modern C++

Contents

1 Functions 2
1.1 Defining Functions . 3
1.2 Calling Functions . 4
1.3 Function Arguments . 4
1.4 Function Signatures . 5

2 Scope 6
2.1 Global Scope . 6
2.2 Local Scope . 7
2.3 namespace Scope . 7

2.3.1 Scope Resolution Operator :: 7
2.3.2 using Namespaces . 9

3 Conditions and Branching 10
3.1 Boolean Expressions . 10

3.1.1 bool() Casts . 10
3.1.2 Comparison Operators ==, !=, <, <=, >, >= 10
3.1.3 Logical Operators !, &&, || 11

3.2 if Statements . 12
3.3 switch Statements . 14

3.3.1 Switch break Statement 14
3.3.2 How switch Works . 15

3.4 Ternary Operator ? : . 16

4 Loops 16
4.1 while Loops . 16

4.1.1 do {} while Loops . 17
4.2 for Loops . 17
4.3 Control Flow Keywords . 18

4.3.1 break Keyword . 18
4.3.2 continue Keyword . 18

1

Ryan Baker C++ Programming Basics Introduction to Modern C++

1 Functions

What is a Function? A function is a reusable block of code that performs a
specified task. Instead of repeating code, functions allow us to write it once and
call it many times. In this way, functions help make programs more organized
and readable.

Consider the following code snippet:

1 #include <iostream >

2

3 int main()

4 {

5 int x = 25, y = 4;

6 int q = x / y;

7 int r = x % y;

8

9 std::cout << x << " / " << y << " = " << q

10 << " remainder " << r << std::endl;

11 }

This snippet calculates and prints the quotient and remainder associated with
dividing two integers x and y. If we decide that we’d like to replicate this logic
on many pairs of x and y, our code can become messy quite quickly:

1 #include <iostream >

2

3 int main()

4 {

5 int x = 25, y = 4;

6 int q = x / y;

7 int r = x % y;

8 std::cout << x << " / " << y << " = " << q

9 << " remainder " << r << std::endl;

10

11 x = 40;

12 y = 17;

13 q = x / y;

14 r = x % y;

15 std::cout << x << " / " << y << " = " << q

16 << " remainder " << r << std::endl;

17

18 x = 234;

19 y = 123;

20 q = x / y;

2

Ryan Baker C++ Programming Basics Introduction to Modern C++

21 r = x % y;

22 std::cout << x << " / " << y << " = " << q

23 << " remainder " << r << std::endl;

24 }

Above, notice that lines 6-10, lines 13-16, and lines 20-23 contain identical logic.
This makes that logic an ideal candidate to be placed into a function.

1.1 Defining Functions

Building upon the motivation for a function described above, we will define a
function called print_divmod().

The first thing to consider when defining a function in C++ the datatype that
this function will return, its return type. For example, a function that adds
two integers will likely return an int. Because print_divmod() only performs
a calculation and prints the result, its return type is void.

Note: To return some piece of data from a function is to pass that piece of
data back to the function caller.

1 // write the function ’s return type before its name

2 // print_divmod returns ‘no type’

3 void print_divmod ();

print_divmod() needs to accept as input two integers: x and y. In C++,
function input arguments are a comma separated list of <type> <name>:

1 // print_divmod takes two integers called x and y

2 void print_divmod(int x, int y);

The above is a valid function declaration. Recall that variable initialization can
be split into declaration and definition. To define a function is to write its body:

1 void print_divmod(int x, int y)

2 {

3 int q = x / y;

4 int r = x % y;

5 std::cout << x << " / " << y << " = " << q

6 << " remainder " << r << std::endl;

7 }

3

Ryan Baker C++ Programming Basics Introduction to Modern C++

1.2 Calling Functions

To call print_divmod(), we use the following syntax:

1 // ... print_divmod () defined above

2

3 int main()

4 {

5 print_divmod (25, 4); // x = 25, y = 4

6 print_divmod (40, 17); // x = 40, y = 14

7 print_divmod (234, 123); // x = 234, y = 123

8 }

Note that in C++, () is the function call operator. It is used to invoke functions
and callable objects in C++, such as print_divmod().

If the function has a return type, its output can be assigned to a variable of
the same type:

1 int add(int a, int b)

2 {

3 return a + b;

4 }

5

6 int main()

7 {

8 int sum = add(21, 21); // sum = 42

9 }

1.3 Function Arguments

By default in C++, arguments are passed as copies into functions. This means
that the memory occupied by the variable passed into a function is not the
same memory occupied by the variable that the function receives. Instead, a
copy of the variable is made and passed.

1 #include <iostream >

2

3 void foo(int x)

4 {

5 x = 10; // reassign x to 10

6 }

7

8 int main()

9 {

4

Ryan Baker C++ Programming Basics Introduction to Modern C++

10 int x = 5;

11 foo(x);

12 std::cout << x << std::endl; // 5

13 }

As a brief aside, we can use the address-of operator & to verify that both variables
do indeed occupy different memory:

1 #include <iostream >

2

3 void foo(int x)

4 {

5 // print the address of x

6 std::cout << &x << std::endl;

7 }

8

9 int main()

10 {

11 int x = 5;

12

13 // print the address of x

14 std::cout << &x << std::endl;

15

16 foo(x);

17 }

1.4 Function Signatures

A foundational concept relating to functions in C/C++ is a function signature.
Every function has a signature. A function signature is made up of the function’s
name and argument types (and it’s surrounding namespace), and it serves
as a unique identifier by which the compiler can refer to the function.

Because the function argument types are a part of its signature, we can define
two functions with the same name but different arguments:

1 int add(int x, int y) { return x + y; }

2 float add(float x, float y) { return x + y; }

3 int add(int x, int y, int z) { return x + y + z; }

The clumsy nature of the above code provides motivation for templates.

5

Ryan Baker C++ Programming Basics Introduction to Modern C++

2 Scope

A variable’s scope is the region of a program where its declaration is visible.
Each declaration within a C++ program occurs within a scope. Each program
has a global scope, which contains the entire program. Narrower scopes are
typically denoted by curly braces {} in C++.

1 #include <iostream > // <------------------------+

2 // |

3 void foo() // <---------------+ |

4 { // foo | |

5 // do foo things // scope | |

6 } // <---------------+ |

7 // |

8 int main() // <---------------+ |

9 { // | |

10 { // <---------+ | global

11 int x; // scope A | | scope

12 } // <---------+ | |

13 // main |

14 { // <---------+ scope |

15 int x; // scope B | | |

16 } // <---------+ | |

17 // | |

18 return 0; // | |

19 } // <---------------+ |

20 // <------------------------+

Note that in the above program, x is declared twice within main(). This, how-
ever, doesn’t cause problems because the declarations occur in disjoint scopes.
In general, you can access symbols in your current scope or any enclosing scope.

2.1 Global Scope

Global scope refers to the scope outside of any class, function, or namespace.
Variables declared in global scope are called global variables and can be accessed
from any part of the program. Global variables are stored in static memory and
their lifetime is the entire duration of the program.

1 #include <iostream >

2

3 int g = 10; // globally scoped variable

4

5 int main() {}

6

Ryan Baker C++ Programming Basics Introduction to Modern C++

2.2 Local Scope

Local scope refers to the region within a block of code defined by curly braces
{}. This scope limits the variable’s visibility and lifetime to that specific block.

1 #include <iostream >

2

3 int g = 30; // global variable

4

5 void some_function ()

6 {

7 int l = 42; // local variable

8 std::cout << g << std::endl;

9 std::cout << l << std::endl;

10 }

11

12 int main()

13 {

14 g = 10;

15 // l = 15; error , cannot access ‘l’

16 some_function ();

17 }

2.3 namespace Scope

Namespaces provide a method for preventing naming conflicts. Entities declared
within a namespace block are placed in a namespace scope, which prevents them
from being mistaken for identically named entities in other scopes.

1 int x = 1;

2

3 namespace MyNamespace

4 {

5 int x = 2; // different variable than on line 1

6 }

2.3.1 Scope Resolution Operator ::

The scope resolution operator :: is used to access namespace-scoped variables
and functions:

1 std::cout << x << std::endl; // 1

2 std::cout << MyNamespace ::x << std::endl; // 2

7

Ryan Baker C++ Programming Basics Introduction to Modern C++

Notice that cout and endl are prefixed with std::. Indeed, this is because they
reside in the standard (std) namespace.

Also notice that, when on line 1, we access x with no namespace prefix, the
compiler smartly infers that we mean to access the global x. If, however, we
had a third x that was local:

1 #include <iostream >

2

3 int x = 1;

4

5 namespace MyNamespace { int x = 2; }

6

7 int main()

8 {

9 int x = 3; // seems I forgot 25 other letters

10

11 std::cout << x << std::endl;

12 std::cout << MyNamespace ::x << std::endl;

13 }

Here the compiler fairly assumes we are refering to the local variable x. Output:

1 3

2 2

The compiler assumes you are refering to the variable with the narrowest scope:

1 #include <iostream >

2

3 int x = 0;

4

5 int main()

6 {

7 int x = 1;

8 {

9 int x = 2;

10 {

11 int x = 3;

12 std::cout << x << std::endl;

13 }

14 std::cout << x << std::endl;

15 }

16 std::cout << x << std::endl;

17 }

8

Ryan Baker C++ Programming Basics Introduction to Modern C++

Output:

1 3

2 2

3 1

To explicitly reference a variable in global namespace, use the scope resolution
operator :: with no namespace:

1 #include <iostream >

2

3 int x = 1;

4

5 int main()

6 {

7 int x = 2;

8 std::cout << ::x << std::endl; // 1

9 }

2.3.2 using Namespaces

In C++, the using keyword allows us to simplify access namespace members.
Instead of using the resoluton operator :: every time we refer to a namespace
member, we can bring the entire namespace or specific elements into the current
scope.

The most common way to use a namespace is with the using namespace direc-
tive. This allows all elements of the specified namespace to be accessed without
needing the namespace:: prefix:

1 #include <iostream >

2

3 using namespace std; // now we don’t need std::

4

5 int main()

6 {

7 cout << "Hello , World!" << endl;

8 }

Instead of importing an entire namespace, we can selectivley bring in elements
with using declarations:

1 #include <iostream >

2

9

Ryan Baker C++ Programming Basics Introduction to Modern C++

3 using std::cout , std::endl;

4

5 int main()

6 {

7 cout << "Hello , World!" << endl;

8 }

This approach is generally prefered over using namespace std; because it re-
duces the risk of naming conflicts.

3 Conditions and Branching

Often times, the desired behavior of our program depends on some piece of data
that is known only at runtime. For example, we may only want to display some
piece of information to a user only if that user is authenticated. The act of
decision-making for control flow is known as branching.

3.1 Boolean Expressions

A Boolean expression is an expression that evaluates to true or false. These
expressions are fundamental in decision-making structures like if statements
and switch statements.

The simplest Boolean expressions are the keyword literals true and false.

1 std::cout << true << std::endl; // 1

2 std::cout << false << std::endl; // 0

3.1.1 bool() Casts

All numerical types in C++ can be cast into a bool type. Generally, if the
number is 0 it is converted to false, else it is true.

1 std::cout << bool (1) << std::endl; // 1

2 std::cout << bool (0) << std::endl; // 0

3 std::cout << bool(-1) << std::endl; // 1

3.1.2 Comparison Operators ==, !=, <, <=, >, >=

Comparison operators return true or false based on the relationship between
two values:

10

Ryan Baker C++ Programming Basics Introduction to Modern C++

Operator Meaning Example
== Equal to x == y

!= Not equal to x != y

< Less than x < y

<= Less than or equal to x <= y

> Greater than x > y

>= Greater than or equal to x >= y

1 std::cout << (1 > 0) << std::endl; // 1

2 std::cout << (1 == 0) << std::endl; // 0

3 std::cout << (0 == 0) << std::endl; // 1

3.1.3 Logical Operators !, &&, ||

Logical operators allow combining multiple Boolean expressions:

Operator Meaning Example
! Logical NOT !(x)

&& Logical AND (x > 0) && (x < 10)

|| Logical OR (x < 0) || (x > 10)

1 std::cout << (1 && 0) << std::endl; // 0

2 std::cout << (1 || 0) << std::endl; // 1

3 std::cout << (!(1)) << std::endl; // 0

Short-Circuiting The logical operators && and || will terminate evaluation
early if the result of the expression can be decided early. This both allows for
better performance and allows the programmer to simplify what would otherwise
be very bulky constructs.

1 #include <iostream >

2

3 bool f() {

4 std::cout << "f" << std::endl;

5 return true;

6 }

7

8 bool g() {

9 std::cout << "g" << std::endl;

10 return false;

11 }

12

11

Ryan Baker C++ Programming Basics Introduction to Modern C++

13 bool h() {

14 std::cout << "h" << std::endl;

15 return true;

16 }

17

18 int main()

19 {

20 f() && g() && h();

21 f() || g() || h();

22 }

Output:

1 f

2 g

3 f

3.2 if Statements

The if statement allows executing a block of code if a given condition is true:

1 #include <iostream >

2

3 int main()

4 {

5 int num;

6 std::cin >> num;

7

8 if (num > 0)

9 {

10 std::cout << "positive" << std::endl;

11 }

12 }

The else block executes when the condition evaluates to false:

1 #include <iostream >

2

3 int main()

4 {

5 int num;

6 std::cin >> num;

7

8 if (num > 0)

12

Ryan Baker C++ Programming Basics Introduction to Modern C++

9 {

10 std::cout << "positive" << std::endl;

11 }

12 else

13 {

14 std::cout << "non -positive" << std::endl;

15 }

16 }

As a stylistic choice, for one-line if statements, you may omit the curly braces
{} and the single line will serve as a block:

1 #include <iostream >

2

3 int main()

4 {

5 int num;

6 std::cin >> num;

7

8 if (num > 0)

9 std::cout << "positive" << std::endl;

10 else

11 std::cout << "non -positive" << std::endl;

12 }

To check multiple conditions, we use else if:

1 #include <iostream >

2

3 int main()

4 {

5 int num;

6 std::cin >> num;

7

8 if (num > 0)

9 std::cout << "positive" << std::endl;

10 else if (num < 0)

11 std::cout << "negative" << std::endl;

12 else

13 std::cout << "zero" << std::endl;

14 }

Note that else if is not a keyword, rather it is the natural conclusion of C++
allowing one statement to follow an if statement without curly braces {}.

13

Ryan Baker C++ Programming Basics Introduction to Modern C++

3.3 switch Statements

The switch statement is used when multiple conditions depend on a single
integer variable. It provides an alternative to multiple if else if statements
that is often both cleaner and more performant.

1 #include <iostream >

2

3 int main()

4 {

5 int day;

6 std::cin >> day;

7

8 switch (num)

9 {

10 case 0:

11 std::cout << "Monday" << std::endl;

12 break;

13 case 1:

14 std::cout << "Tuesday" << std::endl;

15 break;

16 // ...

17 case 6:

18 std::cout << "Sunday" << std::endl;

19 break;

20 default:

21 std::cout << "Invalid day" <<

std::endl;

22 }

23 }

3.3.1 Switch break Statement

Each case should (usually) end with a break; to prevent fall-through. Without
a break, execution continues into the next case:

1 int x = 1;

2

3 switch (x) // switch without breaks

4 {

5 case 0:

6 std::cout << "zero" << std::endl;

7 case 1:

8 std::cout << "one" << std::endl;

9 case 2:

14

Ryan Baker C++ Programming Basics Introduction to Modern C++

10 std::cout << "two" << std::endl;

11 case 3:

12 std::cout << "three" << std::endl;

13 default:

14 std::cout << "invalid" << std::endl;

15 }

Output:

one

two

three

invalid

Had we included break statements, the output would have been as expected:

one

The default label is a special label reserved for switch statements in C++. It
gets executed when none of the other cases are evaluate to true.

1 int x = 1;

2

3 switch (x)

4 {

5 case 0:

6 break;

7 default:

8 std::cout << "default case executed" <<

std::endl;

9 }

3.3.2 How switch Works

It would be a mistake to assume that a switch is merely a stylistic preference
over a series of if else’s. In fact, the way that the two constructs achieve
branching behavior is very different.

In a series of if else statements, each one will be evaluated, then upon a hit
the corresponding block will be entered. In a switch statement, a jump table
is set up allowing control to be transfered directly to the correct case. This is
why the variable within the switch condition must be an integer type.

15

Ryan Baker C++ Programming Basics Introduction to Modern C++

3.4 Ternary Operator ? :

The ternary operator, or the conditional operator, is a concise way to execute
one of two expressions based on a condition.

As you may guess from the name ternary, it takes three arguments e1, e2, e3
in the form e1 ? e2 : e3. If e1 is true, then it returns e2, else it returns e3.
Hence, the following if statement:

1 if (x % 2 == 0)

2 x = x / 2;

3 else

4 x = 3 * x + 1;

can be rewritten as:

1 x = ((x % 2 == 0) ? (x / 2) : (3 * x + 1));

Note that in the above, all of the parentheses () are merely a stylistic choice
intended to help the reader easily parse the expression.

4 Loops

Loops allow a program to execute a block of code multiple times. C++ has two
main types of loops: the while loop and the for loop.

4.1 while Loops

A while loop runs while the given condition remains true.

1 while (condition)

2 {

3 // do cool things (or maybe boring things)

4 }

One common application of a while loop is validating user input:

1 #include <iostream >

2

3 int main()

4 {

5 int x;

6 std::cout << "Enter a positive number: \n";

7 std::cin >> x;

8

16

Ryan Baker C++ Programming Basics Introduction to Modern C++

9 // while the user refuses to comply

10 while (!(x > 0))

11 {

12 std::cin >> x;

13 }

14

15 std::cout << "x = " << x << std::endl;

16 }

4.1.1 do {} while Loops

A do {} while loop is similar to a while loop, but it evaluates the condition
at the end of the loop body, rather than the beginnning. This guarantees that
the loop will execute at least once, even in the initial condition is false.

1 do

2 {

3 // something fun

4 } while (condition);

The input validation program can be refactored using a do {} while loop:

1 #include <iostream >

2

3 int main()

4 {

5 int x;

6 std::cout << "Enter a positive number: \n";

7

8 do

9 {

10 std::cin >> x;

11 } while (!(x > 0));

12

13 std::cout << "x = " << x << std::endl;

14 }

4.2 for Loops

A for loop is commonly used when the number of iterations is either known
beforehand or can be calculated. It consists of three parts:

1 for (initialization; condition; update)

17

Ryan Baker C++ Programming Basics Introduction to Modern C++

2 {

3 // do something awesome

4 }

• Initialization: Piece of code that is run once before the loop begins.

• Condition: The loop runs as long as this condition is true.

• Update: A piece of code that is run at the end of each iteration.

4.3 Control Flow Keywords

4.3.1 break Keyword

The break statement within a loop is used to exit the loop immediately.

1 for (int i = 0; i < 5; ++i)

2 {

3 if (i == 3) // dastardly number 3

4 break;

5 std::cout << i << std::endl;

6 }

Output:

1 0

2 1

3 2

4.3.2 continue Keyword

The continue statement is used to skip the rest of the current iteration and
move on to the next one.

1 for (int i = 0; i < 5; ++i)

2 {

3 if (i == 3) // abominable number 3

4 continue;

5 std::cout << i << std::endl;

6 }

Output:

1 0

18

Ryan Baker C++ Programming Basics Introduction to Modern C++

2 1

3 2

4 4

19

