Introduction and Setup

Introduction to Modern CH+

Ryan Baker
February 8, 2025

<> PURDUE IEEt

Lecture Objectives

e To understand C++'s features at a very high level.
e To install necessary developer tools.
e To understand the basic flow of a C++ program.

e To understand the concepts of datatypes, variables, and how
to work with them in C++.

e To become acquainted with the iostream library for basic I/0.

Ryan Baker Introduction and Setup

Introduction to Modern C++

Contents
1 Introduction to C++ 2
1.1 Why CH++7 . . . oo 2
1.2 Evolutionof C++ 2
1.3 C++ vs. Other Languages 3
2 Environment Setup 4
2.1 Tools Required 4
2.1.1 Text Editoro 4
2.1.2 Compiler 4
2.2 "Hello, World!" Example 4
3 Basic Syntax and Structure 6
3.1 main() 6
3.2 Semicolons, /* comments */, and Whitespace 6
4 Datatypes and Variables 8
4.1 Primitive Types oL 8
4.2 Operator 9
4.3 Declaration and Definition 10
4.3.1 Assignment Operator= 10
4.3.2 Brace Initialization {} 10
4.4 Arithmetic Operators +, =, *, /, % 11
5 Basic I/O with iostrean 12
5.1 Output with std::cout 12
5.2 Input with std::cin oL oo 12
A Installing VSCode and C++ Compiler 13
A1l MacOS. 13
A2 Windows 13
A3 Linux (Ubuntu/Debian-based) 14
B Setting Up VSCode for C++4 Development 15

Ryan Baker Introduction and Setup Introduction to Modern C++

1 Introduction to C++

C++ is a general purpose programming language developed by Bjarne Strous-
trup in 1979 at Bell Labs. In its nearly 50 years in existence, it has evolved from
a simple extension of C into a powerful and modern programming language.

1.1 Why C++7

“Why C+47” can be broken into two separate questions: “Why learn C++7”
and “Why use C++7?” The former has a much more decided answer than the
latter, largely because the question “Why use C++7”" is context dependent.
Why Learn C++47

1. C++ has a very strong “knowledge passport”. Understanding C++ trans-
lates well to ability to learn new languages and programming concepts.

2. C++, more than any other language, is the one language that can do it
all. See §1.3 for an elaboration.

3. Industry demand for C++ may skyrocket in the wake of young developers
taking up new languages. Or maybe not. I am not an oracle.
Why Use C++47?
1. Performance. C++ is a performant language. Only fools argue this.

2. Freedom. C++ provides a great deal of freedom to the programmer
through manual memory management and low-level access.

3. Standardized. C++ is a standardized language, allowing the programmer
to make certain assumptions about program behavior.

1.2 Evolution of C++

&
Q
&)) N A S D
X X% ><Q > X\/ X\/ X% X%
[SalICAeS

<8 g OXX <8
1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

C++ has evolved significantly since its creation, adapting to modern program-
ming needs while maintaining backward compatibility with C. Since 2011, C++
has seen an update every 3 years, with at least two more expected in 2026 and
2029.

C++’s evolution has been a great source of controversy. Because it has to
maintain compatibility with C, some language features are more cumbersome

Ryan Baker Introduction and Setup Introduction to Modern C++

in C++4 than they would be in other languages. On the other hand, C++’s
evolution has turned it into, arguably, the most powerful programming language
available.

1.3 C+H+ vs. Other Languages

C++ distinguishes itself from other programming languages through its unique
combination of features and design choices that make it powerful and versatile.

Compiled. C++ is a compiled language, meaning its source code is translated
directly into machine code. The main alternative to compiled languages are
interpreted languages, such as Python or JavaScript, which get executed line by
line at runtime. Other examples of compiled languages are C, Zig, Rust, and
Go. Compiled languages tend to be faster at execution time but have a more
involved developer experience.

Static typing. C++ enforces type rules at compile time, helping to prevent
“runtime surprises”. The alternative to static typing is dynamic typing, where
values are given types at runtime.

Multi-paradigm. It is not correct to call C++ an object-oriented language.
Rather, C++ supports object oriented programming. C++ also supports other
programming paradigms such as functional and procedural.

Ryan Baker Introduction and Setup Introduction to Modern C++

2 Environment Setup

2.1 Tools Required

To develop C++, two basic tools are required: a text editor and a compiler.

2.1.1 Text Editor

A text editor is a tool to edit plain text /* duh */. Text editors can be very
basic, however, often, developers prefer to work with more comprehensive tools
such as IDEs. An IDE (Integrated Development Environment) is a tool that
includes a text editor as well as language specific debugging and development
capabilities. Some popular IDEs for C++ include:

e VSCode: A very popular and free IDE with support for C/C++ through
extensions. VSCode has no shortage of plugins and customizations.

e CLion: A modern IDE from JetBrains that supports advanced code anal-
ysis and debugging across multiple platforms.

If you prefer a lighter weight development experience, you should consider using
a text editor such as Vim or Emacs.

2.1.2 Compiler

The compiler is responsible for translating your C++ code into machine-readable
instructions. Some popular compilers include:

e clang: My personal choice and best for MacOS.
e gcc: The GNU Compiler Collection, best for Windows and Linux.

e MSVC: An increasingly irrelevant piece of garbage.

Throughout the lecture series, I will be using clang. If a certain flag or directive
does not work for your compiler, simply look up its equivalent.

2.2 "Hello, World!" Example

With your text editor of choice, write the following code into helloworld. cpp:

1 #include <iostream>

2

3 int main ()

a {

5 std::cout << "Hello, World!" << std::endl;
6 return O;
7

}

Ryan Baker Introduction and Setup Introduction to Modern C++

Compile helloworld.cpp using the following command for clang:

$ clang++ helloworld.cpp

or for gee:

$ g++ helloworld.cpp

These commands will produce a.out, an executable file. Run the executable:

$./a.out
Hello, World!

You should see the desired message printed to the console.

Ryan Baker Introduction and Setup Introduction to Modern C++

3 Basic Syntax and Structure

3.1 int main()

The main() function serves a special purpose in a C/C++ program. Namely, it
signifies the entry point for a program. When you run an executable, execution
begins at main() and continues downward line-by-line.

The return value for main () is of type int. The integer value returned from main
informs the system if the program executed successfully. return 0 indicates
successful execution, while a non-zero return indicates some type of failure.

1 int main ()

2 {

3 return 0; // exit success

4}

Compiling and running the above program should will an exit success. The
following program will yield an exit failure:

1 int main ()

2 {

3 return 1; // exit failure

4}

One final /* and rather unimportant */ note: C++ will insert a return 0;

implicitly at the end of the main() function if none is written. This is only true
for the main() function. Thus, the minimal C++ program is:

1 int main() {}

3.2 Semicolons, /* comments */, and Whitespace

Semicolons Every statement in C++ must end with a semicolon. Semicolons
are what tell the compiler that the line is finished:

1 int x = b5;
2 int y = 10 // error: missing °;°’
3 int z = 20;

Comments Comments are a way of “taking notes” that can help you and
other readers understand what a certain piece of code is intended to do. In
C++, there are two ways of making comments:

Ryan Baker Introduction and Setup Introduction to Modern C++

1 // 1) Line comments

2 // A ¢//’ tells the compiler that everything until
3 // the end of this line is a comment

4

/* 2) Block comments */

// Everything within /*...%/ is a comment

o o

Advice: Prefer line comments to block comments. Block comments can be
problematic because you may include a */ where you didn’t mean to:

1 /%
2 Block comments are denoted by /*...x/
3 x/ // error: this line is not a comment

Whitespace C++ does not care about whitespace. The following four pro-
grams are thus all equivalent:

1 int main() { return 0; }

int main() {
return O;

w N =

int main ()

return 0;

Sw N e

1 int main () // if your code looks like this then
2 { // you’ve probably messed up

3 return

4 0

Ryan Baker Introduction and Setup Introduction to Modern C++

4 Datatypes and Variables

All of programming, at the end of the day, is just manipulation and interpreta-
tion of data. For us humans, data comes in many forms: integers, text, etc. As
far as a computer is concerned, however, data only comes in bits. Because of
this, it can be said that the only real difference between datatypes in C++ is
their size, or how many bits they occupy.

Bits A bit, short for binary digit, is the fundamental unit of information. It
can take on the values 0 or 1 (false or true).

Bytes A byte is a term for 8 bits. Because each bit can hold 2 possible values,
a byte can hold 28 = 256 possible values. This is similar to how an 8 digit
number can hold 10® possible values.

4.1 Primitive Types
C++ provides a few built-in datatypes, often called primitive types:

e int: Represents integers (e.g., 0, 1, 42, etc.).

e char: Represents characters (e.g., ’a’, ’b’, "+7, etc.).

e bool: Represents either or fa

e float: Represents fractional numbers (e.g., 5.5, 105.25, etc.).
e void: Represents “no type”.

The integer datatype typically occupies 4 bytes (32 bits) of memory, al-
lowing it to represent integers from —23! to 23! — 1. If, instead of representing
negatives, you'd rather expand the range of representable positives, prepend the

sned keyword to the integer:

1 int x = 3000000000; // exceeds the bounds of int
2 unsigned int x = 3000000000; // works

The character datatype is just an int in disguise. All characters are
encoded as integers according to an ASCII table (shown below). Characters
typically occupy 1 byte of memory, and can thus take on 256 possible values.

Ryan Baker Introduction and Setup Introduction to Modern C++

o 0 000 NULL 32 20 040 space 64 40 100 e 9% 60 140

1 1 001 SOH 33 2 041 ! 65 a 101 A 97 61 141 a
2 2 002 sTX 3 2 042 » 66 a2 102 [98 62 142 b
3 3 003 ETX 35 23 043 " 67 a3 103 c 99 63 143 c
a 4 004 EoT 36 2 044 B 68 4 104 o 100 64 144 d
5 5 005 ENQ 37 25 045 % 69 a5 105 E 101 65 145 e
6 6 006 ACK 38 26 046 & 70 46 106 F 102 66 146 f
7 7 007 BEL 39 27 047 ; 7 a7 107 G 103 67 147 I3
8 8 010 8s 40 28 050 (7 a8 110 H 104 68 150 h
9 9 o1 TAB a1 29 051) 7 49 m | 105 69 151 i
10 a 012 LF 2 2 052 . 74 4 12) 106 6 152 i
1 b 013 vr a3 2 053 + 75 b 13 K 107 6b 153 k
12 c 014 FF a 2 054 i 76 4c 14 L 108 6c 154 !
13 d 015 R a5 2 055 - 7 4d 15 ™M 109 6d 155 m
1 e 016 s0 6 2 056 g 78 4e 116 N 110 6e 156 n
15 f 017 st a7 2 057 / 79 af 17 o m 6f 157 o
16 10 020 DLE 8 30 060 0 80 50 120 4 12 70 160]
17 1 021 oc1 9 3 061 1 81 51 121 Q 13 7 161 q
18 12 022 oc2 50 32 062 2 82 52 122 R 114 7 162 r
19 13 023 oC3 51 33 063 3 83 53 123 s 115 73 163 s
20 14 024 oca 52 34 064 4 8 54 124 T 116 7 164 t
21 15 025 NAK 53 35 065 5 85 55 125 u 17 75 165 u
2 16 026 SYN 54 36 066 6 86 56 126 v 18 76 166 v
23 17 027 T8 55 37 067 7 87 57 127 w 119 7 167 w
2 18 030 caN 56 38 070 8 88 58 130 X 120 78 170 x
2 19 031 M 57 39 o7 9 89 59 131 Y 121 79 1 v
26 1a 032 sus 58 3 o072 : % sa 132 z 122 7a 172 z
27 1b 033 ESC 59 3b 073 i 9 sb 133 [123 7 173 {
28 1c 034 s 60 3 074 < 92 S¢ 134 \ 124 7c 174 |
29 1d 035 [61 3d 075 = 9 5d 135 1 125 7d 175)
30 1e 036 RS 62 3e 076 > % se 136 A 126 7e 176 o
31 1f 037 us 63 3f 077 ? 95 s 137 e 127 7f 177 DEL

. alphar i thms . com

The integer-character equivalence can be demonstrated:

1 int x = ’a’;

2 std::cout << x << std::endl; // prints 97
1 char x = 97;
2 std::cout << x << std::endl; // prints ’a’

bool The bool datatype is used to represent the logical values true or false.
Although it only needs one bit in theory, it typically occupies 1 byte of memory.
This is because computers have no efficient way of addressing individual bits.

float The float datatype is used to represent fractional values. It typically
occupies 4 bytes of memory. If more precision or range is required, double exists
and typically occupies 8 bytes of memory.

4.2 sizeof Operator

The sizeof operator allows us to get the size of a datatype or variable in bytes.

std::cout << sizeof (int) << std::endl;
std::cout << sizeof (char) << std::endl;
std::cout << sizeof(bool) << std::endl;
//

int x = 42;
std::cout << sizeof(x) << std::endl;

N O O W N e

Ryan Baker Introduction and Setup Introduction to Modern C++

4.3 Declaration and Definition

C++ variable initialization can be broken down into two pieces: declaration
and definition. Variable declaration occurs when a variable is given a name
and a type:

1 int x; // "declares" an integer variable x

Definition occurs when a variable is assigned a value:

1 x = 10; // "defines" x to be 10

Declaration and definition may occur on the same line:

1 int x = 10; // "declares" and "defines" x to be 10

4.3.1 Assignment Operator =

The assignment operator assigns the value of the operand on its right to the
variable on its left:

1 x = 10; // assigns the value 10 to x

4.3.2 Brace Initialization {}

Brace initialization is a feature of modern C++ (C++11). The “standard” way
to initialize a variable is using the = operator:

1 int x = 42; // initializes x to 42

The shortcoming of this method has to do with narrowing conversions. A
narrowing conversion occurs when a value does not fit into a datatype that it’s
assigned to, and thus has to be truncated or otherwise modified to fit. All of
the following are examples of narrowing conversions:

1 int x = 42.5; // cannot store fractions
2 char y = 1000; // sizeof char is 1 byte
3 unsigned z = -10; // z cannot represent negatives

These conversions are allowed by C++, mostly to maintain backwards com-
patibility with C. Brace initialization prevents these narrowing conversions by
throwing errors when they occur:

10

Ryan Baker Introduction and Setup Introduction to Modern C++

1 int x { 42.5 };
2 char y { 1000 };
3 unsigned z { -10 };

4.4 Arithmetic Operators +, -, *, /, %

C++ supports the basic arithmetic operators for numerical datatypes:

1 int x = 10;

2 int y = 20;

3

4 int sum = x + y; // sum = 30

5 int diff = x - y; // diff = -10
6 int prod = x * y; // prod = 200
7 int quot =y / x; // quot = 2

8 int mod = x % ¥y // mod = 0

Integer Division Dividing two integers often results in a non-integer value.
Hence, in C++, truncation division is used:

1 std::cout << (20 / 3) << std::endl; // 6
2 std::cout << (1 / 2) << std::endl; // O
3 std::cout << (-1 / 2) << std::endl; // O

To get around this, you can use float types instead:

1 std::cout << (float(20)/3) << std::emndl; // 6.66667
2 std::cout << (1.0 / 2) << std::emndl; // 0.5
3 std::cout << (-1 / 2.0) << std::emndl; // -0.5

Modulus The modulus operator can be thought of as the remainder operator.
It returns the remainder of performing integer division on it’s operands:

1 std::cout << (20 % 3) << std::endl; // 2
2 std::cout << (9 % 3) << std::emndl; // O
3 std::cout << (10 % 6) << std::endl; // 4

11

Ryan Baker Introduction and Setup Introduction to Modern C++

5 Basic I/O with iostream

5.1 Output with std::cout

The std: : cout stream allows you to display messages or values on the console.
It is part of the iostream library and uses the insertion operator <<.

1 std::cout << "Hello, World!" << std::endl;

2

3 // multiple insertions

4 std::cout << "Hello, " << "World!" << std::endl;
5

6 std::cout << "The answer is: " << 42 << std::endl;

std: :endl moves the cursor to the next line and flushes the output buffer.

5.2 Input with std::cin

The std::cin stream allows you to read values from user input. It uses the
extraction operator >>.

std::cin >> x;

1 int x; // declare x as an integer
2

3 // print a message

4 std::cout << "Enter a number: ";
5

6 // read x

-

8

9

std::cout << std::endl << "x = " <K< x << std::endl;

std::cin, by default, skips whitespace when reading input. Multiple inputs
can be chained together:

1 int x, y, Z;
2 std::cin >> x >> y >> z;

12

Ryan Baker Introduction and Setup Introduction to Modern C++

A Installing VSCode and C++ Compiler
A.1 MacOS
1. Install Visual Studio Code

e Go to the VSCode webpage.
e Download the version for macOS and open the .dmg file.

e Move VSCode into the Applications folder.
2. Install Xcode Command Line Tools

e Open your Terminal and run the following command:

1 $§ xcode-select --install

e Follow the prompts to install the Command Line Tools, which include
clang.

3. Verify Installation

e In your Terminal, type:

\ 1 $ clang --version
\

If installed correctly, this command will print the version of clang.

A.2 Windows
1. Consider booting your machine with Linux or buying a new one.
2. Install Visual Studio Code

e Go to the VSCode webpage.
e Download the version for Windows and run the installer.

e Follow the prompts to complete the installation.

3. See Instruction 1
4. Install C++ Compiler with MinGW

e Download the MinGW-w64 installer from Mingw-w64 SourceForge.
o Select architecture (32-bit or 64-bit) during installation.
e Add the compiler to your system path:

(a) Open the Start Menu, search for Environment Variables, and
select Edit the system environment variables.

13

https://code.visualstudio.com
https://code.visualstudio.com
https://sourceforge.net/projects/mingw/

Ryan Baker Introduction and Setup Introduction to Modern C++

(b) Inthe Environment Variables window, click Path, then Edit.

(c) Click New and add the path to the bin directory of your MinGW
installation (e.g., C:\mingw-w64\bin).

5. Verify Installation

e In your terminal, type:

1 $ g++ --version

If installed correctly, this command will print the version of g++.

6. See Instruction 1

A.3 Linux (Ubuntu/Debian-based)

If you are a Linux user then you're likely acquainted with a text editor such as
Vim, Emacs, or Nano. Installing VSCode is likely not the best option for you.

1. Install C++ Compiler (GCC)

e Install g+ by running:

\
\1 $ sudo apt install build-essential
\

2. Verify Installation

e Check that g+ is installed by running:

[
|1 $ g++ --version
\

14

Ryan Baker Introduction and Setup Introduction to Modern C++

B Setting Up VSCode for C++ Development

1. Install C++ Extension

e Open VSCode and go to the Extensions View (Ctrl+Shift+X or
Cmd+Shift+X or use the sidebar).

e Search for C/C++ by Microsoft and click Install.
2. Configure Build Tasks

e Create a folder for you C++ project and open it in VSCode.
e Create a .cpp file and write a program.

e Open Terminal, and compile and execute your program.

15

