
Contents

1 Function Templates 2
1.1 Function Template Declaration and Definition 4

1.1.1 typename Keyword . 5
1.2 Function Template Instantiation 5

1.2.1 Implicit Instantiation . 6
1.2.2 Template Argument Deduction 7
1.2.3 Explicit Instantiation . 7

2 Class Templates 11
2.1 Class Template Declaration and Definition 11

2.1.1 Member Function Definitions 13
2.1.2 Static Member Definitions 14

3 Variable Templates 15

4 Variadic Templates 16

5 Template Specialization 17

1

1 Function Templates

To understand what a template is, it’s helpful to first grasp why they’re used.
Consider how you might implement a function, max(), that takes two arguments
and returns the greater of the two. This function is general enough to work on
any type that supports the comparison operator>. Here’s an implementation
for a specific type, like int:

1 int max(int a, int b)

2 {

3 return (a > b ? a : b);

4 }

Now, imagine you need to implement the same max() function for float values:

1 float max(float a, float b)

2 {

3 return (a > b ? a : b);

4 }

And for int* values:

1 int* max(int* a, int* b)

2 {

3 return (a > b ? a : b);

4 }

At this point, the problem becomes clear: you are duplicating the same logic for
every data type. This redundancy clutters the codebase and makes it difficult to
build a reusable library for generic functionality. Consider a custom class that
can be compared:

1 class YourClass

2 {

3 public:

4 bool operator>(const YourClass& c);

5 // ...

6 };

2

No library in the world can create generic functionality such as max() that
works for YourClass–after all, they don’t even know it exists. Instead of shout-
ing from the rooftops, pleading with the library architects to recognize the sheer
brilliance of YourClass, and hoping they’ll bless us with support in the next
version, we can take matters into our own hands with a more flexible approach:

1 template<class T>

2 T max(T a, T b)

3 {

4 return (a > b ? a : b);

5 }

Behold the almighty template. Templates allow us to write a single function
that works with any type T, provided T supports the operations we perform on
it. By declaring template<class T>, we instruct the compiler to generate a
generic function–a blueprint that can operate on any type T. We can explicitly
specify T when calling the function:

1 #include <iostream>

2

3 template<class T>

4 T max(T a, T b)

5 {

6 return (a > b ? a : b);

7 }

8

9 int main()

10 {

11 int a { 32 }, b { 64 };

12 char p { 'p' }, q { 'q' };

13 float x { 1.5 }, y { 1.0 };

14

15 std::cout << max<int>(a, b) << std::endl; // T = int

16 std::cout << max<char>(p, q) << std::endl; // T = char

17 std::cout << max<float>(x, y) << std::endl; // T = float

18 }

3

Terminal

$./a.out

64

q

1.5

When max() is called, the compiler generates a specific version of the func-
tion tailored for the provided type T. This allows us to reuse the same logic
across different types without duplicating code–an essential feature in library
development, as it enables the creation of reusable code that can handle custom
types.

1.1 Function Template Declaration and Definition

As with functions and classes, templates must be declared before they can be
used. A template declaration specifies the template’s name, the types it operates
on, but it does not provide the full implementation. The syntax for a template
declaration looks like this:

1 template<class T, class U>

2 void foo(T a, U b);

In this example, T and U are template parameters, which are placeholders rep-
resenting types that will be provided when the template is instantiated. These
parameters define the “family” of functions that the template describes.

The template definition is where you implement the function or class that was
declared earlier. For example, continuing from the previous declaration:

1 template<class T, class U>

2 void foo(T a, U b)

3 {

4 // do something...

5 }

4

1.1.1 typename Keyword

In the parameter list of a template declaration, typename can be used inter-
changeably with class to declare template parameters. As a result, the follow-
ing two declarations are equivalent:

1 template<class T>

2 T max(T a, T b);

1 template<typename T>

2 T max(T a, T b);

For most cases, the choice between typename and class is purely a matter of
style or preference. Reasons to prefer one keyword or the other will present
themsevles throughout the following chapters. However, there are contexts
where only typename is valid (and contexts where only class is valid)these
cases will be discussed in later chapters.

1.2 Function Template Instantiation

When you declare a template function like max(), you are not creating a func-
tion. Instead, you’re defining a blueprint that the compiler uses to create
functions as needed. This process is called template instantiation. A function
is only instantiated when you call it with a specific type, prompting the com-
piler to generate a corresponding version. We can illustrate this idea with an
example comparing the compiler output of two source files:

1 // filea.cpp

2 template<class T>

3 T abs(T t) { return (t >= 0 ? t : -t); }

4

5 int main() {}

1 // fileb.cpp

2 int main() {}

5

Terminal

$ clang++ -S filea.cpp -o filea.s

$ clang++ -S fileb.cpp -o fileb.s

$ diff filea.s fileb.s | wc

0 0 0

In the above example, we have two source files:

1. filea.cpp defines a template function abs, but it is never called.

2. fileb.cpp is a minimal C++ program containing only main().

Since there are no calls to abs() in filea.cpp, the compiler does not
generate any machine code for it. When we compile both files into as-
sembly using the -S flag and compare the outputs with diff, they are
identical. This confirms that template code is not instantiated until it is
used.

Template instantiation occurs at compile-time when the function is called, gen-
erating a unique function definition for each combination of template parame-
ters. The beauty of this approach lies in its efficiencyyou only pay for what you
use. If your program only requires a max() function for int and double, the
compiler generates code only for those types, leaving other potential instantia-
tions unused. This selective generation avoids unnecessary bloat, keeping your
compiled binaries smaller and your compile times faster.

1.2.1 Implicit Instantiation

When you use a template function, the compiler must create a specific version
of that function for the given type. If the required instance does not already
exist (or if the existence of the defintion affects the semanitcs of the program),
the compiler will generate it through a process called implicit instantiation.
In this process, the compiler deduces the template parameter T based on the
types of the function arguments.

1 // implicit.cpp

2 template<class T>

3 T max(T a, T b) { return (a > b ? a : b); }

6

4 int main()

5 {

6 int x { max(5, 6) }; // max<int>(int, int)

7 double y { max(5.0, 6.0) }; // max<double>(double, double)

8 char z { max('5', '6') }; // max<char>(char, char)

9 }

1.2.2 Template Argument Deduction

Above, notice that we don’t explicitly tell the compiler which version of max() to
call. Instead, the compiler deduces the template parameter T from the function
arguments. To implicitly instantiate a function template, the compiler must be
able to determine every template argument, though they don’t always need to
be directly specified. This deduction mechanism enables the use of template
operator functions, as there’s no valid syntax to explicitly specify types passed
to arguments without rewriting them as a function call:

1 #include <iostream>

2

3 int main()

4 {

5 // std::cout uses the template operator<< to handle

6 // printing different types

7 std::cout << "7" << 7 << 7.0 << std::endl;

8 }

1.2.3 Explicit Instantiation

Explicit instantiation forces the compiler to generate a specific version of a
function with particular template parameters. This can be useful when you
want to control exactly when and where the template code is generated. To
explicitly instantiate a template function, simply follow the template keyword
with a declaration for the function:

1 // explicit instantiation of max<int>()

2 template int max<int>(int, int);

7

We can verify that explicit instantiation indeed generates the function by using
the objdump command to view the symbol table of the object file:

1 // filea.cpp

2 template<class T>

3 void foo() { /* fooing... */ }

4

5 template void foo<int>(); // instantiation of foo<int>()

6 template void foo<double>(); // instantiation of foo<double>()

7

8 int main() {}

1 // fileb.cpp

2 template<class T>

3 void foo() { /* fooing... */ }

4

5 // no explicit instantiations...

6

7 int main() {}

Terminal

$ clang++ filea.cpp -std=c++23 -c

$ clang++ fileb.cpp -std=c++23 -c

$ objdump -tC filea.o

SYMBOL TABLE:

0000000000000000 l F __TEXT,__text ltmp0

0000000000000010 l O __LD,__compact_unwind ltmp1

0000000000000004 w F __TEXT,__text void foo<double>()

0000000000000000 w F __TEXT,__text void foo<int>()

0000000000000008 g F __TEXT,__text _main

$ objdump -tC fileb.o

SYMBOL TABLE:

0000000000000000 l F __TEXT,__text ltmp0

0000000000000008 l O __LD,__compact_unwind ltmp1

0000000000000000 g F __TEXT,__text _main

8

In this example, foo<int>() and foo<double>() are explicitly instanti-
ated in filea.cpp. Running objdump on the object file shows entries for
void foo<int>() and void foo<double>(). However, in fileb.cpp,
since no explicit instantiations are provided, no such entries appear in
the symbol table.

It might still be unclear why you would want to use explicit instantiation, given
that C++ can automatically instantiate template functions for you. To demon-
strate the need for explicit instantiation, consider how your project grows in
complexity. As it expands, you’ll likely want to break it into multiple modules,
across .cpp and .h files. For example:

1 // lib.h

2 template<class T>

3 T max(T a, T b);

1 // lib.cpp

2 template<class T>

3 T max(T a, T b)

4 {

5 return (a > b ? a : b);

6 }

Now, you might want to use this library in your main application:

1 // main.cpp

2 #include <iostream>

3 #include "lib.h"

4

5 int main()

6 {

7 std::cout << max(4, 5) << std::endl;

8 }

However, when you try to compile your masterpiece, you’ll encounter a linker
error:

9

Terminal

$ clang++ -std=c++23 main.cpp lib.cpp

Undefined symbols for architecture arm64:

"int max<int>(int, int)", referenced from:

_main in main-cbf51c.o

ld: symbol(s) not found for architecture arm64

When the translation unit for main.cpp is compiled, the compiler sees
a reference to int max<int>() and assumes the linker will be able to
resolve it. However, when lib.cpp is compiled, the compiler finds no
instantiations of max(), and therefore does not generate any concrete
functions for it. As a result, when it’s time to link the object files, the
necessary function does not exist, leading to the undefined symbol er-
ror. This issue can be resolved by explicitly instantiating max<int>() in
lib.cpp:

1 // lib.cpp

2 template<class T>

3 T max(T a, T b)

4 {

5 return (a > b ? a : b);

6 }

7

8 template int max<int>(int, int);

By doing this, you ensure that the function is created, even if it’s used
across multiple translation units.

Like all features in programming, explicit instantiation comes with trade-offs.
While it offers improved modularity by controlling when and where template
code is generated, it sacrifices some level of generality because it requires ex-
plicitly defining functions for each type, limiting the flexibility to handle new or
unforeseen types. This is why template libraries are often implemented entirely
in header files. However, the trade-off can be worth it, especially when you
know in advance which specific types your library needs to support.

10

2 Class Templates

Just like functions, classes can also be parameterized with types. This is es-
pecially useful for creating data structures or containers that can operate on
a variety of data types. Class templates provide a way to write flexible and
reusable code while maintaining type safety.

2.1 Class Template Declaration and Definition

Declaring and defining class templates follows the same structure as function
templates. The template keyword introduces the template parameter list, which
can then be used throughout the class:

1 template<class T>

2 class MyClass

3 {

4 // ...

5 };

The members of a class template can use the type parameters declared in the
template definition:

1 template<class T, class U, class V>

2 class MyClass

3 {

4 private:

5 T var1;

6 U* var2;

7 V& var3;

8 // ...

9 };

We can then instantiate MyClass with specific types:

1 MyClass<int, int, int> x {};

For demonstration purposes, the following List class (defined in list.h) will
be used throughout the examples:

11

1 #include <iostream>

2

3 template<class T>

4 class List {

5 struct Node {

6 T data; // node's data

7 Node* next; // ptr to next node

8 Node(T val): data(val), next(nullptr) {}

9 };

10 Node* head; // ptr to first node

11

12 public:

13 List(): head(nullptr) {}

14 ~List() {

15 for (Node* cursor = head; cursor != nullptr;) {

16 Node* next { cursor->next }; // save next node

17 delete cursor; // delete current

18 cursor = next; // move to next

19 }

20 }

21

22 void insert(T val) {

23 Node* node { new Node(val) }; // make new node

24 node->next = head; // link it

25 head = node; // update head ptr

26 }

27

28 friend std::ostream& operator<<

29 (std::ostream& os, const List<T>& l) {

30 for (typename List<T>::Node* cursor = l.head;

31 cursor != nullptr; cursor = cursor->next) {

32 os << cursor->data << " -> "; // print node data

33 }

34 os << "nullptr" << std::endl;

35 return os; // end of list

36 }

37 };

12

Heres an example of how to use the List class:

1 #include "list.h"

2

3 int main()

4 {

5 List<int> list {};

6

7 list.insert(40);

8 list.insert(30);

9 list.insert(20);

10 list.insert(10);

11

12 std::cout << list << std::endl;

13 }

Terminal

$./a.out

10 -> 20 -> 30 -> 40 -> nullptr

2.1.1 Member Function Definitions

To define a member function outside of the class definition, we must specify
that it is a template and fully qualify the class template with its parameter.
Heres how the external definition of insert() would look:

1 template<class T>

2 void List<T>::insert(T val)

3 {

4 Node* node { new Node(val) }; // make new node

5 node->next = head; // link it

6 head = node; // update head ptr

7 }

When a member function of a class template takes additional template parame-
ters, those parameters must be specified when defining the function outside the

13

class definition:

1 #include <iostream>

2

3 template<class T>

4 struct Structure {

5 T value;

6 template<class U> void method() const;

7 };

8

9 template<class T>

10 template<class U>

11 void Structure<T>::method() const {

12 std::cout << U(value) << std::endl;

13 }

14

15 int main()

16 {

17 Structure<double> s { 5.5 };

18 s.method<int>(); // prints 5

19 }

2.1.2 Static Member Definitions

Class templates can have static members, just like regular classes. The definition
of a static data member in a class template involves specifying the template
parameter followed by the variable definition:

1 template<class T>

2 struct S {

3 static int s_var;

4 };

5

6 template<class T> int S<T>::s_var { -1 };

In this example, s_var is initialized to -1, and its value is shared across all
instances of S<T> for any given type T.

14

3 Variable Templates

One notable feature introduced in C++14 is the variable template. Variable
templates allow us to define parameterized constants, making it easy to work
with constants of different types. Here’s a simple example of how we can define
𝜋 using a variable template:

1 template<class T>

2 const T pi = T(3.14159265358979323);

In this code, pi is a variable template that can be instantiated with various
types. The variable template allows 𝜋 to be used with different data types, such
as double or int, without needing to write separate definitions for each type.

1 #include <iostream>

2

3 template<class T> const T pi = T(3.14159265358979323);

4

5 int main()

6 {

7 using namespace std;

8 cout << "math:" << pi<double> << endl; // 3.14159

9 cout << "engineering:" << pi<int> << endl; // 3

10 }

15

4 Variadic Templates

Since C++11, templates can accept a variable number of template parameters.
This feature, known as variadic templates, allows you to pass an arbitrary
number of arguments of arbitrary types to a template. It is especially useful
in scenarios where you need flexibility in the number and types of arguments.
For example, you can use variadic templates to create a function that prints an
arbitrary set of objects:

1 #include <iostream>

2

3 void print() {}

4

5 template<class T, class... Types>

6 void print(T first, Types... args)

7 {

8 std::cout << first << std::endl;

9 print(args...);

10 }

11

12 int main()

13 {

14 print(5, 6, 7.0, "Hello, World!");

15 }

If one or more arguments are passed to print(), the function template is used.
print() calls itself recursively for the remaining arguments. The remianing
arguments names args are called a parameter pack.

16

5 Template Specialization

There are often advantages to treating certain combinations of template pa-
rameters as special cases. Sometimes these are performance advantages, while
other times the general template may simply fail to work for a specific set of
parameters. Template specialization allows us to define implementations for
specific template parameter combinations that override the default instantia-
tion. When the compiler encounters an instantiation matching a specialized
version, it uses the specialized implementation instead of the generic one. Con-
sider the following example:

1 #include <string>

2

3 template<class From, class To>

4 To convert(From x)

5 {

6 return To(x);

7 }

8

9 int main()

10 {

11 using std::string;

12 double x { convert<int, double>(114) }; // x = 114.0

13 char y { convert<int, char>(114) }; // y = 'r'

14 string z { convert<int, string>(114) }; // error!

15 }

The example above fails to compile because there is no viable conversion from
int to std^::string. While the generic template works for types with compati-
ble constructors, some conversions require custom logic. If our project calls for
an implementation, we can define one with template specialization. To declare
a specialization, follow the template keyword with empty angle brackets <>,
then write the specialized function declaration:

1 template<> std::string convert<int, std::string>(int x);

We then define our int → string algorithm within the specialization:

17

1 template<> std::string convert<int, std::string>(int x)

2 {

3 std::string s {};

4 do

5 {

6 s = std::string(1, char('0' + x % 10)) + s;

7 x /= 10;

8 } while (x > 0);

9 return s;

10 }

The definition of a specialized template is also an instantiation:

1 // specialization.cpp

2

3 template<class T>

4 T max(T a, T b)

5 {

6 return (a > b ? a : b);

7 }

8

9 template<> int max<int>(int a, int b)

10 {

11 return a; // not sure why one would do this

12 }

13

14 int main() {}

When we compile and inspect the object file, we see the specialized version of
max<int>() is instantiated:

Terminal

$ clang++ -std=c++23 -c specialization.cpp

$ objdump -tC specialization.o

SYMBOL TABLE:

0000000000000000 l F __TEXT,__text ltmp0

0000000000000020 l O __LD,__compact_unwind ltmp1

18

0000000000000000 g F __TEXT,__text int max<int>(int, int)

0000000000000018 g F __TEXT,__text _main

19

